Answer:
250,000
Explanation:
<h2> </h2>
<h2>formula = ( F=ma </h2>
- F=1500N
- a=6m/s^2
- F= ma
- m=?
- 1500/6 = m
- m=250 kg
- 1kg =1000gm so 250kg =250,000gm
- m =250×10^3 gm
Answer:

Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy = 
now we know that


now for the space station will be same as above force




Answer:
m = 236212 [kg]
Explanation:
The potential energy can be determined by means of the product of mass by gravity by height. In this way, we have the following equation.

where:
P = potential energy = 3360000000 [J]
m = mass [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 1450 [m]
Now, we can clear the mass from the equation above:
![3360000000=m*9.81*1450\\m = 236212 [kg]](https://tex.z-dn.net/?f=3360000000%3Dm%2A9.81%2A1450%5C%5Cm%20%3D%20236212%20%5Bkg%5D)
Answer:
I think the Bulb No. 2 will stop emitting light if the bulb No. 1 burns out.
Answer:
Potential energy of spring = 24 Joules.
Explanation:
Given the following data;
Spring constant = 85N/m
Extension, e = 0.75m
Mass = 25kg
To find the potential energy of a spring
Potential energy of a spring is given by the formula;
P.E = ½ke²
Substituting into the equation, we have
P.E = ½*85*0.75²
P.E = 42.5 * 0.5625
P.E = 23.91 ≈ 24 Joules
P.E = 24 Joules