Answer:
100m
Explanation:
100m
s=ut+1/2at^2
s= unknown, u=0, a=2, t=10
s=0*10+1/2(2)(10)^2
s=1/2(2)(100)
s=1(100)
displacement = 100 meters
Answer:
1.79 T
Explanation:
Applying,
F = BILsin∅................ Equation 1
Where F = Force, B = magnetic field, I = current flowing through the wire, L = length of the wire, ∅ = angle between the magntic field and the force
make B the subject of the equation
B = F/ILsin∅............. Equation 2
From the question,
Given: F = 2.15 N, I = 30 A, L = 4.00 cm = 0.04 m, ∅ = 90° (perpendicular to the field)
Substitute these values into equation 2
B = 2.15/(30×0.04×sin90°)
B = 2.15/1.2
B = 1.79 T
Hence the average field strength is 1.79 T
Answer: Smaller than ; larger than
Explanation:
When the elevator is moving in the upward direction, then the force acting on it is negative in nature because of
N= mg +ma, (g is gravity and a is acceleration)
here ma is negative so the N= mg-ma
Hence, it feels smaller than its original weight.
When the elevator is moving downward , then the force acting will be positive in nature
N= mg+ma,
here ma will be positive so it feels larger the original weight of passenger.
Water - helps with dehydration.
instruction - help you understand how you need to do the workout.
trainers - wether it's an online trainer or a gym trainer they always say how to be safe while working out.
Answer:
2621.25 meters
Explanation:
First, write down what we are given.
Initial velocity = 27.5 m/s
Final velocity = 42.4 m/s
Time = 75 seconds
We need to look at the kinematic equations and determine which one will be best. In this case, we need an equation with distance. I am going to use
, but you can also use the other equation, 
We need to find acceleration. To find it, we need to use the formula for acceleration:
. Plugging in values, 
Next, plug in what we know into the kinematics equation and solve for distance. 