1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
4 years ago
15

Balance the following chemical equation:NaBr+Cl2, –NaCl+Br2​

Chemistry
1 answer:
svlad2 [7]4 years ago
6 0

Hey there!

NaBr + Cl₂ → NaCl + Br₂

First balance Na.

One on the left, one on the right: already balanced.

Next balance Br.

One on the left, two on the right. Add a coefficient of 2 in front of NaBr.

2NaBr + Cl₂ → NaCl + Br₂

Lastly balance Cl.

Two on the left, one on the right. Add a coefficient of 2 in front of NaCl.

2NaBr + Cl₂ → 2NaCl + Br₂  

This is our final balanced equation.

Hope this helps!

You might be interested in
Determine the number of molecules in a 100. gram sample of CCl4
enyata [817]
100. g CCl4* (1 mol CCl4/ 153.8 g CCl4)* (6.02*10^23 CCl4 molecules/ 1 mol CCl4)= 3.91*10^23 CCl4 molecules.
(Note that the units cancel out so you get the answer)

Hope this helps~
8 0
3 years ago
Calculate the number of molecules in 46.0 grams of water
Natalka [10]

Answer:

Explanation:

Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.

4 0
4 years ago
How many atoms are there in 3 moles of Fe?
Harrizon [31]
The atomic mass of an element on the periodic table is the weight of 1 mole of atoms. For example, the atomic mass of Fe is 55.8 on the periodic table. If you weigh out 55.8 grams of Fe you will have 1 mole of iron, or 6.02 x 1023 atoms.
Download doc
6 0
3 years ago
A 110 g copper bowl contains 240 g of water, both at 21.0°C. A very hot 410 g copper cylinder is dropped into the water, causing
vlada-n [284]

Answer:

There is 98.76 kJ energy transfered to the water as heat.

Explanation:

<u>Step 1:</u> Data given

Mass of copper bowl = 110 grams

Mass of water = 240 grams

Temperature of water and copper = 21.0 °C

Mass of the hot copper cylinder = 410 grams

8.6 grams being converted to steam

Final temperature = 100 °C

<u>Step 2:</u> Calculate the energy gained by the water:

Q = m(water)*C(water)*ΔT + m(vapor)*Lw

⇒with mass of water = 0.240 kg

⇒ with C(water) = the heat capacity of water = 4184 J/kg°C

⇒ with ΔT = the change in temperature = T2 - T1 = 100 °C - 21.0 = 79°C

⇒ with mass of vapor = 8.60 grams = 0.0086 kg

⇒ with Lw = The latent heat of vaporization (water to steam) = 22.6 *10^5 J/kg

Q = 0.24kg * 4184 J/kg°C *79°C + 0.0086 kg*22.6*10^5 J/kg

Q = 79328.64 + 19436 = 98764.64 J = 98.76 kJ

There is 98.76 kJ energy transfered to the water as heat.

4 0
4 years ago
Omg GUYS I NEED HELPPP
Ilia_Sergeevich [38]

27) Partial pressure of oxygen: 57.8 kPa

29) Final volume: 80 mL

30) Final volume: 8987 L

31) Due to property of water of being polar, ice floats on water

Explanation:

27)

In a mixture of gases, the total pressure of the mixture is the sum of the partial pressures:

p_T = p_1 + p_2 + ... + p_N

In this problem, the mixture contains 3 gases (helium, carbon dioxide and oxygen). We know that the total pressure is

p_T=201.4 kPa

We also know the partial pressures of helium and carbon dioxide:

P_{He}=125.4 kPa\\P_{CO_2}=18.2 kPa

The total pressure can be written as

p_T=p_{He}+p_{CO_2}+p_{O_2}

where p_{O_2} is the partial pressure of oxygen. Therefore, we find

p_{O_2}=p_T-p_{He}-p_{CO_2}=201.4-125.4-18.2=57.8 kPa

29)

Assuming that the pressure of the gas is constant, we can apply Charle's law, which states that:

"For an ideal gas at constant pressure, the volume of the gas is proportional to its absolute temperature"

Mathematically,

\frac{V}{T}=const.

where

V is the volume of the gas

T is the Kelvin temperature

We can re-write it as

\frac{V_1}{T_1}=\frac{V_2}{T_2}

Here we have:

V_1 = 42 mL (initial volume)

T_1=-89^{\circ}C+273=184 K is the initial temperature

T_2=77^{\circ}C+273=350 K is the final temperature

Solving for V2, we find the final volume:

V_2=\frac{V_1 T_2}{T_1}=\frac{(42)(350)}{184}=80 mL

30)

For this problem, we can use the equation of state for ideal gases, which can be written as

\frac{p_1 V_1}{T_1}=\frac{p_2 V_2}{T_2}

where in this problem:

p_1 = 102.3 kPa is the initial pressure

V_1=1975 L is the initial volume

T_1=25^{\circ}C+273=298 K is the initial temperature

p_2=21.5 kPa is the final pressure

T_2=12^{\circ}C+273=285 K is the final temperature

And solving for V2, we find the final volume of the balloon:

V_2=\frac{p_1 V_1 T_2}{p_2 T_1}=\frac{(102.3)(1975)(285)}{(21.5)(298)}=8987 L

31)

A molecule of water consists of two atoms hydrogen bond with an atom of oxygen (H_2 O) in a covalent bond.

While the molecul of water is overall neutral, due to the higher electronegativity of the oxygen atom, electrons are slightly shifted towards the oxygen atom; as a result, there is a slightly positive charge on the hydrogen side, and a slightly negative charge on the oxygen side (so, the molecules is said to be polar).

As a consequence, molecules of water attract each other, forming the so-called "hydrogen bonds".

One direct consequence of the polarity of water is that ice floats on liquid water.

Normally, for every substance on Earth, the solid state is more dense than the liquid state. However, this is not true for water, because ice is less dense than liquid water.

This is due to the polarity of water. In fact, when the temperature of water is decreased to freezing point and water becomes ice, the hydrogen bondings "force" the molecules to arrange in a lattice structure, so that the molecules become more spaced when they turn into solid state. As a result, ice occupies more volume than water, and therefore it is less dense, being able to float on water.

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • As an object falls freely near the earths surface , the loss in gravitational potential energy of the object is equal to its wha
    8·2 answers
  • scientific description about the pizza dough doubles its size when it is placed in a warm place . how does this happen
    11·1 answer
  • 6. How do the two main classifications of energy resources differ?
    11·1 answer
  • What makes gas turn into a liquid?
    14·1 answer
  • What happens to the molarity of bleach when you prepare a solution using 1 gallon of water and 5 table spoons of bleach (sodium
    7·1 answer
  • A cup of coffee is considered a_____<br> A)precipitate<br> B)solute<br> C)solution<br> D)solvent
    10·1 answer
  • A compound is 52.14% C, 13.13% H, and 34.73% O. What is the empirical formula of the compound?
    9·2 answers
  • Write the isotope notation for an element with 5 protons and 6 neutrons.
    8·1 answer
  • How many atoms are in 9.95 moles of iron?
    10·1 answer
  • What causes air to move towards the water from the land during the night
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!