1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
3 years ago
7

Please help with Physics Circuits!

Physics
2 answers:
Zigmanuir [339]3 years ago
5 0
1) Let's start by calculating the equivalent resistance of the three resistors in parallel, R_2, R_3, R_4:
\frac{1}{R_{234}}= \frac{1}{R_2}+ \frac{1}{R_3}+ \frac{1}{R_4}= \frac{1}{4.5 \Omega}+ \frac{1}{1.3 \Omega}+ \frac{1}{6.3 \Omega}=1.15 \Omega^{-1}
From which we find
R_{234}= \frac{1}{1.15 \Omega^{-1}}=0.9 \Omega

Now all the resistors are in series, so the equivalent resistance of the circuit is the sum of all the resistances:
R_{eq}=R_1 + R_{234} = 5 \Omega + 0.9 \Omega = 5.9 \Omega
So, the correct answer is D) 


2) Let's start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} =  \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{5 \Omega}+ \frac{1}{5 \Omega}= \frac{2}{5 \Omega}
From which we find
R_{23} = 2.5 \Omega

And these are connected in series with a resistor of 10 \Omega, so the equivalent resistance of the circuit is
R_{eq}=10 \Omega + 2.5 \Omega = 12.5 \Omega

And by using Ohm's law we find the current in the circuit:
I= \frac{V}{R_{eq}}= \frac{9 V}{12.5 \Omega}=0.72 A
So, the correct answer is C).


3) Let' start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} =  \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{5 \Omega}+ \frac{1}{5 \Omega}= \frac{2}{5 \Omega}
From which we find
R_{23} = 2.5 \Omega
Then these are in series with all the other resistors, so the equivalent resistance of the circuit is
R_{eq}=R_1 + R_{23}+R_4 = 5 \Omega + 2.5 \Omega + 5 \Omega =12.5 \Omega

And by using Ohm's law we find the current flowing in the circuit:
I= \frac{V}{R_{eq}}= \frac{12 V}{12.5 \Omega}=0.96 A

And so the voltage read by the voltmeter V1 is the voltage drop across the resistor 2-3:
V= I R_{23} = (0.96 A)(2.5 \Omega)=2.4 V
So, the correct answer is D).


4) Again, let's start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} = \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{13 \Omega}+ \frac{1}{18 \Omega}=0.13 \Omega^{-1}
From which we find
R_{23} = 7.55 \Omega

Now all the resistors are in series, so the equivalent resistance of the circuit is:
R_{eq}= R_1 + R_{23}+R_4=8.5 \Omega+7.55 \Omega + 3.2 \Omega = 19.25 \Omega

The current in the circuit is given by Ohm's law
I= \frac{V}{R_{Eq}}= \frac{15 V}{19.25 \Omega}=0.78 A

Now we can compare the voltage drops across the resistors. Resistor 1:
V_1 = I R_1 = (0.78 A)(8.5 \Omega)=6.63 V
Resistor 2 and resistor 3 are in parallel, so they have the same voltage drop:
V_2 = V_3 = V_{23} = I R_{23} = (0.78 A)(7.55 \Omega)=5.89 V
Resistor 4:
V_4 = I R_4 = (0.78 A)(3.2 \Omega)=2.50 V

So, the greatest voltage drop is on resistor 1, so the correct answer is D).


5) the figure shows a circuit with a resistor R and a capacitor C, so it is an example of RC circuit. Therefore, the correct answer is D).

6) The circuit is the same as part 4), so the calculations are exactly the same. Therefore, the power dissipated on resistor 3 is
P_3 = I_3^2 R_3 =  \frac{V_3^2}{R_3}= \frac{(5.89 V)^2}{18 \Omega}=2.0 W
So, correct answer is B).

7) The circuit is the same as part 4), so we can use exactly the same calculation, and we immediately see that the resistor with lowest voltage drop was R4 (2.50 V), so the correct answer is B) R4.
frez [133]3 years ago
4 0

Answer:

The person that answered before me is right except for question 1

1.    5.9 Ω

2.   0.72 A

3.   2.4 V

4.   R1

5.   RC circuit

6.   2.0 W

7.   R4

Explanation:

I took the test and I got question 1 wrong. (K12 Physics sem 2 8.05)

You might be interested in
A change in the earths core would have a greatest effect on?
Anit [1.1K]
Convection currents in the mantle. 
7 0
3 years ago
A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a
Oliga [24]

Answer:

the mass drop by 6.5cm before coming to rest.

Explanation:

Given that:

the mass of the block M= 1.40 kg

angle of inclination θ = 30°

spring constant K = 40.0 N/m

mass of the suspended block m = 60.0 g = 0.06 kg

initial downward speed = 1.40 m/s

The objective is to determine how far does it drop before coming to rest?

Let assume it drops at y from a certain point in the vertical direction;

Then :

Workdone by gravity on the mass of the block is:

w_1g = 1.4*9.81*y*sin30 = - 6.867y

Workdone by gravity on the mass of the suspended block is:

w_2g = 0.06*9.81 = 0.5886

The workdone by the spring = -1/2ky²

= -0.5 × 40y²

= -20 y²

The net workdone is = -20 y² - 6.867y + 0.5886y

According to the work energy theorem

Net work done = Δ K.E

-20 y² - 6.867y + 0.5886 = 1/2 × 0.06 × 1.4²

-20 y²  - 6.867y + 0.5886 = 0.5 × 0.1176

-20 y²  - 6.867y + 0.5886 = 0.0588

-20 y²  - 6.867y + 0.5886 - 0.0588

-20 y²  - 6.867y + 0.5298 = 0

multiplying through by (-)

20 y²  + 6.867y - 0.5298 = 0

Using the quadratic formula:

\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

where;

a = 20 ; b = 6.867 c= - 0.5298

\dfrac{-(6.867)  \pm \sqrt{(6.867)^2-(4*20*-0.5298)}}{2*(20)}

= \dfrac{-(6.867)  + \sqrt{(6.867)^2-(4*20*-0.5298)}}{2*(20)} \ \ \ OR \ \ \  \dfrac{-(6.867)  - \sqrt{(6.867)^2-(4*20*-0.5298)}}{2*(20)}= 0.0649 OR  −0.408

We go by the positive integer

y = 0.0649 m

y = 6.5 cm

Therefore; the mass drop by 6.5cm before coming to rest.

7 0
4 years ago
The magnetic field of a bar magnet is the strongest ___.
AnnyKZ [126]
B) at the poles of the magnet
5 0
3 years ago
Read 2 more answers
an object is 40M below the surface of sea water of density 1020 kg/m3 calculate the pressure difference
olga nikolaevna [1]

Answer:

P = 400248 [Pa]

Explanation:

We can calculate the hydrostatic pressure exerted by a column of liquid by means of the following equation.

P=Ro*g*h

where:

Ro = density = 1020 [kg/m³]

g = gravity acceleration = 9.81 [m/s²]

h = depth = 40 [m]

Therefore:

P=1020*9.81*40\\P=400248 [Pa]

8 0
3 years ago
What do you think causes the rising and sinking of molten rock in the mantle?
Svet_ta [14]

Answer:

Heyyy hope this helps

Convection currents describe the rising, spread, and sinking of gas, liquid, or molten material caused by the application of heat.

3 0
3 years ago
Other questions:
  • How does the Sun release nuclear energy?
    8·2 answers
  • would an elephant standing on one leg exert a higher force on a scale than an elephant on four legs. why​
    12·1 answer
  • The temperature of a gas is _____.
    13·2 answers
  • A uniform continuous line charge with net positive charge Q and length L lies on the x-axis from −L2 to +L2. This problem asks a
    12·1 answer
  • A biker accelerates from rest to 10 m/s in 5 seconds. What is the biker's
    8·1 answer
  • Will knows that the gravitational pull of mars is less than the gravitational pull of earth. When he lands on mars, his mass wil
    6·1 answer
  • What type of wave interaction causes dead spots?
    6·1 answer
  • On an aircraft carrier, a jet can be catapulted from 0 to 240
    5·1 answer
  • Given a force of 88N and an acceleration of 4 m/s 2, what is the mass?
    12·1 answer
  • A large airplane typically has three sets of wheels: one at the front and two farther back, one on each side under the wings. Co
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!