Answer:
Sck my p3nis
Explanation:
if you do so, then your mom will have coronavirus.
Answer:Racquet force is twice of Player force
Explanation:
Given
ball arrives at a speed of 
ball returned with speed of 
average Force imparted by racquet on the ball is given by

where 
time of contact of ball with racquet


When it land on the player hand its final velocity becomes zero and time of contact is same as of racquet


From 1 and 2 we get

Hence the magnitude of Force by racquet is twice the Force by player
Complete question:
A train has an initial velocity of 44m/s and an acceleration of -4m/s². calculate its velocity after 10s ?
Answer:
the final velocity of the train is 4 m/s.
Explanation:
Given;
initial velocity of the train, u = 44 m/s
acceleration of the train, a = -4m/s² (the negative sign shows that the train is decelerating)
time of motion, t = 10 s
let the final velocity of the train = v
The final velocity of the train is calculated using the following kinematic equation;
v = u + at
v = 44 + (-4 x 10)
v = 44 - 40
v = 4 m/s
Therefore, the final velocity of the train is 4 m/s.
Answer: 
<u>Explanation:</u>
A linear equation is of the form: y = mx + b where
- m is the slope
- b is the y-intercept (where it crosses the y-axis)
x + 4y = 16
4y = -x + 16


The y-intercept (b) = 4
Next, find the slope given point (4, 5) and b = 4

Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision