Practically yes
So
If mass is more output may come less so it affects the efficiency practically
But thepritically it doesn't
Answer:
The magnetic force points in the positive z-direction, which corresponds to the upward direction.
Option 2 is correct, the force points in the upwards direction.
Explanation:
The magnetic force on any charge is given as the cross product of qv and B
F = qv × B
where q = charge on the ball thrown = +q (Since it is positively charged)
v = velocity of the charged ball = (+vî) (velocity is in the eastern direction)
B = Magnetic field = (+Bj) (Magnetic field is in the northern direction; pointing forward)
F = qv × B = (+qvî) × (Bj)
F =
| î j k |
| qv 0 0|
| 0 B 0
F = i(0 - 0) - j(0 - 0) + k(qvB - 0)
F = (qvB)k N
The force is in the z-direction.
We could also use the right hand rule; if we point the index finger east (direction of the velocity), the middle finger northwards (direction of the magnetic field), the thumb points in the upward direction (direction of the magnetic force). Hence, the magnetic force is acting upwards, in the positive z-direction too.
Hope this Helps!!!
Answer:D
Explanation:Electric power=I*I*R
=12*12*100
=14400watts
<span>a thin fibrous cartilage between the surfaces of some joints, e.g., the knee.</span>
Answer:
ok jsjajakaka you can come to me when you get home can you please send me the details of the day and I will be there at this time of year is the best way to get a hold of the guy who was the guy who was the guy who was the guy who was the guy who was the guy that was the only thing that was the case but I don't know if I can help you