Answer:
Explanation:
a)
Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.
100
x 10cm = 1000
Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....
x 1000
= 1000g or 1kg
Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....
1000g + 100g = 1100g or 1.1kg
b)
The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....
20g ÷
= 2.5 
c)
Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5
overflowed. So now we the same process as in number a) just with a few adjustments.
x (1000
- 2.5
) = 997.5g
So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.
100g + 997.5g + 20g = 1117.5g or 1.1175kg
A and c
Because it defines the boundaries of the system
Answer:
It will be cut in half
Explanation:
The diffraction of a slit is given by the formula
a sin θ = m where
a = width of the slit,
λ = wavelength and
m = integer that determines the order of diffraction.
Next we divide both sides by a, we have
sin θ = m λ / a
Also, recall that
a’ = 2 a
Then we substitute in the previous equation
2asin θ' = m λ, if divide by 2a, we have
sin θ' = (m λ / 2a).
Now again, from the first equation, we said that sin θ = m λ / a, so we substitute
sin θ ’= sin θ / 2
Then we use trigonometry to find the width, we say
tan θ = y / L
Since the angle is small, we then have
tan θ = sin θ / cos θ
tan θ = sin θ, this then means that
sin θ = y / L
we will then substitute
y’ / L = y/L 1/2
y' = y / 2
this means that when the slit width is doubled the pattern width will then be halved
Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.