The question is incomplete, the complete question is;
In the 1800s, a popular belief known as vitalism stated that life processes could not be explained by the laws of physics and chemistry,and were instead dictated by an independent life force. Which discovery most likely caused scientists to revise this hypothesis regarding the origin of life on Earth?
a. that inorganic compounds existed within live organisms
b. that organic compounds could be synthesized in a laboratory
c. that RNA could serve as a template to synthesize DNA
d. that self-replicating molecules existed inside cells
Answer:
b. that organic compounds could be synthesized in a laboratory
Explanation:
Vitalism is the belief that "living organisms are fundamentally different from non-living entities because they contain some non-physical element or are governed by different principles than are inanimate things"(wikipedia).
This theory held that the molecules involved in life processes could not be synthesized in the laboratory.
All these were upturned after Fredrich Whöler's synthesis of urea in 1828. He was able to show that molecules involved in life process can also be synthesized in the laboratory. This gave rise to modern synthetic organic chemistry.
Answer:
option c) 3 is the correct option
Explanation
as we know that 3rd principal energy level contains 3 sub levels,which are named as s,p and d. These sub levels further contain different numbers of orbitals,
and these sub levels can be termed as regions of probability of finding an electron, and each orbital may have a maximum number of two electrons in it.
Whenever energy is converted from one form to another, some of that energy is lost by being changed into heat.
When dissolved in water, acids donate hydrogen ions (H+). Hydrogen ions are hydrogen atoms that have lost an electron and now have just a proton, giving them a positive electrical charge. ... If a solution has a high concentration of H+ ions, then it is acidic.
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.