The answer is:
18 years.
The explanation:
when Star 1 is 34 light years from Earth and Star 2 is 52 light years from Earth. that means the distance between star 1 and star 2 is 52-34 = 18 years so, If Star 2 explodes as a supernova so, the explosion would take 18 years to be seen from a planet orbiting Star 1.
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg
Answer:

Explanation:
Mechanical Energy=Potential Energy+ kinetic Energy

To calculate Kinetic Energy:-

To calculate Potential Energy:-

therefore,

The skydiver's total mechanical energy is 459365J
Answer:
1.5 * 10^-2 Tm^2
Explanation:
Electric Flux = B.A cos(theta)
B = 0.055 T
A = 0.32 m^2
theta = 30
Electric Flux = (0.055 T).(0.32 m^2).Cos(30) = 0.0152 = 1.5 * 10^-2 Tm^2
Answer:
281.6 K
Explanation:
The speed of sound in an ideal gas is given by c = √(γKT/m).
From the question speed of sound in Ne, c₁ = 2c₂ speed of sound in Kr
c₁ = √(γKT₁/m₁) and c₂ = √(γKT₂/m₂)
So √(γKT₁/m₁) = 2√(γKT₂/m₂) where T₁, m₁ and T₂, m₂ are the temperatures and atomic masses of Neon and Krypton respectively.
So, √(T₁/m₁) = 2√(T₂/m₂)
(T₁/m₁) = 4(T₂/m₂) (squaring both sides)
T₁ = 4(T₂m₁/m₂)
Given that m₁ = 20.2 u , m₂ = 83.8 u, T₂ = 292 K
T₁ = 4(292 × 20.2/83.8) K = 23593.6/83.8 = 281.55 K ≅ 281.6 K