The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11
Answer:
Climate is determined by averaging the seasonal weather conditions for a region over a period of many ______ years
Choose the correct association for: dense bushes rain forest or jungle
Choose the correct association for: plains savanna
Answer:
A
Explanation:
From a Solenoid we know that a magnetic fiel is always inversely proportional to lenght L or BL = constant

As I is constant



Description of an object in projectile motion is;
- Gravity acts to pull the object down.
- The object’s inertia carries it forward.
- The path of the object is curved.
Explanation:
The path of the projectile is usually curved, and NOT straight, due to the influence of gravity on it which is teh only force acting on it-, causing it motion path to fall towards the earth. Most projectiles follow a parabolic path. The projectile, even though it was launched, its motion is then only due to its own inertia – tendency to stay in motion in a straight line, or rest, unless an external force is acting on it - such as drag or friction. An example of such projectile motion is of ballistic missiles.