C Weight is the gravitational pull on an object
Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
<span>This spectrometer reading shows some red, blue, and purple. Our atom is most likely Hydrogen source.
This spectrometer reading shows some reds, orange, and yellow. Our atom is most likely Neon source.
This spectrometer reading shows some red, yellow, and blue. Our atom is most likely Helium source.
This spectrometer reading shows some yellow, blue, and purple. Our atom is most likely Mercury source</span>
Momentum is a property of moving objects but not stationary objects. You can see this in the formula because momentum equals mass times velocity squared (p=m*v^2). You would not have momentum if you didn't have velocity. Stationary objects have potential energy, and things with potential energy do not have velocity. This is why momentum is a property of moving objects but not of stationary objects.