In order for the heat to be transferred from the body X to the body Y via conduction, there must be a difference in temperature of body X with respect to body Y. Body X must have a higher temperature than body Y. This process continues until both bodies arrive at thermal equilibrium, meaning they both have the same temperature.
Answer:
The air fraction to be removed is 0.11
Given:
Initial temperature, T =
= 283 K
Pressure, P = 250 kPa
Finally its temperature increases, T' =
= 318 K
Solution:
Using the ideal gas equation:
PV = mRT
where
P = Pressure
V = Volume
m = no. of moles of gas
R = Rydberg's Constant
T = Temperature
Now,
Considering the eqn at constant volume and pressure, we get:
mT = m'T'
Thus
(1)
Now, the fraction of the air to be removed for the maintenance of pressure at 250 kPa:

From eqn (1):


Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg