Answer:
B. - 210 kJ
Explanation:
<em>∵ ΔHrxn = ∑(bond energies)products - ∑(bond energies)reactants.</em>
- The bond formation in the products releases energy (exothermic).
- The bond breaking in the reactants requires energy (endothermic).
The products:
- H₂O contains 2 O-H (- 459 kJ/mol) bonds.
- O₂ contain 1 O=O (- 494 kJ/mol) bond.
The reactants:
- H₂O₂ contain 2 O–H (459 kJ/mol) bonds and 1 O–O (142 kJ/mol) bond.
∵ ΔHrxn = ∑(bond energies)products - ∑(bond energies)reactants.
<em>∴ ΔHrxn = [2 (2 x (O–H bond energy) + (1 x (O=O bond energy)] - 2 [(2 x (O–H bond energy) + (1 x (O–O bond energy)] </em>= [2 (2 x - 459 kJ/mol) + (1 x - 494 kJ/mol)] - 2 [(2 x 459 kJ/mol) + (1 x 142 kJ/mol)] = (- 2330 kJ) + (2120 kJ) = <em>- 210 kJ.</em>
<u><em>Answer:</em></u>
- The correct structure of phosphoric acid is A.
<u><em>Explanation</em></u>
- P should form five covalent bonds. In this strcuture P form three single bond with 3-hydroxyl groups while one single bondformed with oxygen. As oxygen will form two bonds , it carry negative charge, while P should form five bond but here it is forming 4 bonds due to this P has positive charge but overall structure contain neutral charge due to cancellation of positive and negative charges. Beside this, there are 3 H, Four O and One P according to formula H3PO4.
Answer:

Explanation:
Hello there!
In this case, according to the following chemical reaction we found on goo gle as it was not given:

Whereas we can see a 2:4 mole ratio of potassium permanganate product to potassium hydroxide reactant with molar masses of 158.03 g/mol and 54.11 g/mol respectively. In such a way, by developing the following stoichiometric setup, we obtain the mass of KOH to start with:

Best regards!