(sample g/1) X (1 mole/40.078(MW of Ca)) = moles of sample (moles of sample)(6.022 x 10^23( no of atoms)/ 1 mole) = # of atoms in a 120 g sample of calcium Avogadro's number=6.022x 10^23 atoms in 1 mole
nuclear power--used to turn turbines...
fossil fuels--burned to provide energy that is....
renewable energy--energy that with come back after use
outlet--a device....
steam--nuclear reactors....
I'm not sure but I tried lol,lemme know if I'm wrong :D
Answer: 318 K
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 231 kPa
= final pressure of gas = 168 kPa
= initial volume of gas = 3.25 L
= final volume of gas = 4.35 L
= initial temperature of gas = 
= final temperature of gas = ?
Now put all the given values in the above equation, we get:


At 318 K of temperature will the same gas take up 4.35 liters of space and have a pressure of 168 kPa
Answer:
211.63 g.
Explanation:
- Particles could refer to atoms, molecules, formula units.
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication: </u></em>
1.0 mole → 6.022 x 10²³ molecules.
??? mole → 8.95 x 10²³ molecules.
- The no. of moles of magnesium acetate = (8.95 x 10²³ molecules) (1.0 mole) / (6.022 x 10²³ molecules) = 1.486 mol.
∴ The grams of magnesium acetate are in 8.95 x 10²³ formula units = n x molar mass = (1.486 mol)(142.394 g/mol) = 211.63 g.