1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
4 years ago
13

Suppose the gravitational force between two spheres is 100 N. If the distance between the spheres is halved, what is the new gra

vitational force between them?
Physics
1 answer:
natima [27]4 years ago
8 0

Answer:

The gravitational force becomes 4 times i.e 400N

Explanation:

You might be interested in
Which technology can observe electromagnetic radiation and avoid light pollution to allow for exploration beyond our solar syste
Sever21 [200]

Answer:

<h3><u>The Hubble Space Telescope</u> makes one orbit around Earth every 95 minutes. The electromagnetic spectrum shows that visible light is between infrared radiation and ultraviolet radiation.</h3>
6 0
3 years ago
Conversion fraction 1$=4q, how many are in 20$
Tom [10]

Answer:

\boxed{\sf 20 \$ = 80q}

Given:

1$ = 4q

To Find:

How many quarters are in 20$

Explanation:

To find out how many quarters are in 20$ we need to multiple 4 × 20.

\sf 1\$  = 4q

\sf  20\$  = 4 \times 20q

\sf = 80q

8 0
3 years ago
Read 2 more answers
Can you explain that gravity pulls us to the Earth &amp; can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
4 years ago
Some hypothetical alloy is composed of 12.5 wt% of metal A and 87.5 wt% of metal B. If the densities of metals A and B are 4.27
densk [106]

Answer:

The number of atoms in the unit cell is 2, the crystal structure for the alloy is body centered cubic.

Explanation:

Given that,

Weight of metal A = 12.5%

Weight of metal B = 87.5%

Length of unit cell = 0.395 nm

Density of A = 4.27 g/cm³

Density of B= 6.35 g/cm³

Weight of A = 61.4 g/mol

Weight of B = 125.7 g/mol

We need to calculate the density of the alloy

Using formula of density

\rho=n\times\dfrac{m}{V_{c}\times N_{A}}

n=\dfrac{\rho\timesV_{c}\times N}{m}....(I)

Where, n = number of atoms per unit cells

m = Mass of the alloy

V=Volume of the unit cell

N = Avogadro number

We calculate the density of alloy

\rho=\dfrac{1}{\dfrac{12.5}{4.27}+\dfrac{87.5}{6.35}}\times100

\rho=5.98

We calculate the mass of the alloy

m=\dfrac{1}{\dfrac{12.5}{61.4}+\dfrac{87.5}{125.7}}\times100

m=111.15

Put the value into the equation (I)

n=\dfrac{5.9855\times(0.395\times10^{-9}\times10^{2})^3\times6.023\times10^{23}}{111.15}

n=1.99\approx 2\ atoms/cell

Hence, The number of atoms in the unit cell is 2, the crystal structure for the alloy is body centered cubic.

5 0
4 years ago
A planar electromagnetic wave is propagating in the +x direction. At a certain point P and at a given instant, the electric fiel
Free_Kalibri [48]

Answer:

B=2.74\times 10^{-10}\ T

Explanation:

It is given that,

A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m

We need to find the magnetic vector of the wave at the point P at that instant.

The relation between electric field and magnetic field is given by :

c=\dfrac{E}{B}

c is speed of light

B is magnetic field

B=\dfrac{E}{c}\\\\B=\dfrac{0.082}{3\times 10^8}\\\\B=2.74\times 10^{-10}\ T

So, the magnetic vector at point P at that instant is 2.74\times 10^{-10}\ T.

3 0
3 years ago
Other questions:
  • Why is wavelength the main limiting factor on limit of resolution in light microscopy?
    5·1 answer
  • The safe load, L, of a wooden beam supported at both ends varies jointly as the width, w, the square of the depth, d, and invers
    12·1 answer
  • Why there is no inductive reactance in dc circuits
    8·1 answer
  • How many planets are there in the milky way galaxy?
    13·1 answer
  • What formula gives the strength of an electric field, E, at a distance from a known source change?
    11·2 answers
  • The magnetic circuit below is excited by a 100-turn coil wound over the central leg. The mean length of the central leg is 5.5cm
    8·1 answer
  • How far can a bus carrying small children, travel at a rate of 60 km per hour travel in 2 1/2 hours?
    5·1 answer
  • A 74.1 kg high jumper leaves the ground with
    13·1 answer
  • Name six simple machines. Give an example of each machine​
    11·2 answers
  • An object in free fall has a velocity of 5m/s in the upward direction. What is the instantaneous velocity of the object one seco
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!