Answer:
a) 19.4 m/s
b) 19 m/s
Explanation:
a) In the given question,
the potential energy at the initial point = Ui = 0
the potential energy at the final point = Uf = mgh
the kinetic energy at the initial point = Ki = 1/2 mv₀².
the kinetic energy at the final point = Kf = 0
work done by air= Ea= fh = 0.262 N
Now, using the law of conservation of energy
initial energy= final energy
Ki +Ui = Kf + Uf +Ea
1/2 mv₀² + 0 = 0 + mgh + fh
1/2 mv₀² = mgh + fh
h = v₀²/ 2g (1 +f/w)
calculate m
m= w/g = 5.29 /9.8
= 0.54 kg
h = 20 ²/ (2 x9.80) x (1 0.265/5.29)
h = 19.4 m.
b) 1/2 mv² + 2fh = 1/2 mv₀²
Vg = 19 m/s
The frequency increasing makes the crests pass more quickly. Frequency is a count of how many times per second an event occurs. In waves, this event is the passing of an entire cycle. Once the cycle has passed, the wave repeats. The faster the wave repeats, the higher the frequency. For this reason, frequency has units of hertz, Hz. The unit of hertz is 1/s or "per second"
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer:
Object 2, which has a density of 1.9 g/cm3, since it has more density than freshwater.