Average speed= total distance/total time =12km/h
For finding the orbital speed of the satellite we can say that the centripetal force for the circular motion of satellite is provided by the gravitational force of earth
so here we can say


now we will have

now here we will say that orbital speed of the satellite is inversely depends on the orbital radius
<em>So here if orbital speed is half then as per above relation we can say that orbital distance will become four times</em>
<em>Also we can say that if orbital speed is double then orbital distance will become one fourth of initial distance.</em>
Well i think <span>Hydrolysis - using water to split a molecule that has formed via a condensation</span>
Answer:
(1) 0.333 Hz
(2) 4 sec
(3) 2 sec, 0.5 Hz
Explanation:
(1) We have given time period of pendulum is 3 sec
So T = 3 sec
Frequency will be equal to 
(2) Frequency of the pendulum is given f = 0.25 Hz
Time period is equal to 
(3) It is given that a pendulum makes 10 back and forth swings in 20 seconds
So time taken to complete 1 back and forth swings = 
So time period T = 2 sec
Frequency will be equal to 
Answer:
t = 402 years
Explanation:
To find the number of year that electrons take in crossing the complete transmission line, you first calculate the drift speed of the electrons. Then, you use the following formula for the current in a wire:
(1)
n: number of mobile charge carrier per volume = 8.50*10^28 e/m^3
q: charge of the electron = 1.6*10^-19 C
vd: drift velocity of electron in the metal = ?
A: cross sectional area of the wire = π r^2 = π (0.02m/2)^2 = 3.1415*10^-4 m^2
I: current in the wire = 1110 A
You solve the equation (1) for vd:

Next, you calculate the time by using the information about the length of the line transmission:

hence, the electrons will take aproximately 402 years in crossing the line of transmission