1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
3 years ago
5

A cat is moving at 18 m/s when it accelerates for 2 seconds. What is its acceleration?

Physics
1 answer:
vova2212 [387]3 years ago
5 0

Answer: acceleration:4 m/s^{2}

              velocity: 26 m/s

Explanation:

The complete question is written bellow:

<em>A cat is moving at 18 m/s when it accelerates at </em>4 m/s^{2}<em> for 2 seconds. What is his new velocity?  </em>

<em />

In this situation the following equation will be useful:

V=V_{o}+at

Where:

V is the cat’s final velocity (new velocity)

V_{o}=18 m/s is the cat’s initial velocity

a=4 m/s^{2} is the cat's acceleration

t=2 s is the time

Solving the equation:

V=18 m/s+(4 m/s^{2})(2 s)

V=26 m/s This is the cat's new velocity

You might be interested in
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other wor
Bess [88]

Answer:

a) The final velocity is 20 m/s when the large-mass object is the one moving initially.

b) The final velocity is 9.0 m/s when the small-mass object is the one moving initially.

Explanation:

The momentum of the system is calculated as the sum of the momenta of each object. Each momentum is calculated as follows:

p = m · v

Where:

p =  momentum.

m =  mass.

v = velocity.

Then, the momentum of the system is the following:

m1 · v1 + m2 · v2 = (m1 + m2) · v

Where:

m1 = mass of the bigger object.

v1 = velocity of the bigger object.

m2 = mass of the smaller object.

v2 = velocity of the smaller object.

v = final velocity of the two objects after the collision.

Solving the equation for the final velocity:

(m1 · v1 + m2 · v2)/ (m1 + m2) = v

a) Let´s calculate the final velocity when the bigger object is moving:

(7.1 kg · 29 m/s + 3.2 kg · 0)/(7.1 kg + 3.2 kg) = v

<u>v = 20 m/s</u>

b) When the smaller object is moving:

(7.1 kg · 0 m/s + 3.2 kg · 29 m/s) / (7.1 kg + 3.2 kg) = v

<u>v = 9.0 m/s</u>

7 0
3 years ago
What is (9x10^9)(2.6x10^-6)(1.4x10^-6) / 36
Natali [406]

Answer:

0.00091

Explanation:

(9x10^9) (2.6x10^-6) (1.4x10^-6) / 36

(9,000,000,000) (0.0000026) (0.0000014) /36

|

23,400(0.0000014) /36

|

0.03276 /36

|

0.00091

3 0
3 years ago
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a dri
mylen [45]

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

4 0
3 years ago
A physics student tests the theory of projectile motion by leaping off a 225 meter tall building. She runs off the building hori
tamaranim1 [39]
In this item, we are given with the x-component of the velocity. The y-component is equal to 0 m/s. The time it takes for it to reach the volume can be related through the equation,

   d = V₀t + 0.5gt²

Substituting the known values,

  225 = (0 m/s)(t) + (0.5)(9.8)(t²)

Simplifying,
 
   t = 6.776 s

To determine the distance of the student from the edge of the building, we multiply the x-component by the calculated time.


   range = (12.5 m/s)(6.776 s)

   range = 84.7 m

<em>Answer: 84.7 m</em>

4 0
3 years ago
Glass is transparent to visibile light under normal conditions; however, at extremely high intensities, glass will absorb most o
8_murik_8 [283]

Answer:

3 photons

Explanation:

The energy of a photon E can be calculated using this formula:

E=\frac{hc}{\lambda}

Where h corresponds to Plank constant (6.626070x10^-34Js), c is the speed of light in the vacuum (299792458m/s) and \lambda is the wavelength of the photon(in this case 800nm).

E=\frac{hc}{\lambda}=\frac{(6.626070\times10^{-34})(299792458)}{800\times10^{-9}}=\frac{1.986445812\times10^-25}{800}=2.483057265\times10^{-19}J

Tranform the units

1eV=1.602176634\times10^{-19}J\\2.483057265\times10^{-19}J(\frac{1eV}{1.602176634\times10^{-19}J})=1.549802445eV

The band Gap is 4eV, divide the band gap between the energy of the photon:

\frac{4ev}{1.549802445eV}=2.508974118

Rounding to the next integrer: 3.

Three photons are the minimum to equal or exceed the band gap.

4 0
3 years ago
Other questions:
  • In a certain clock, a pendulum of length L1 has a period T1 = 0.95s. The length of the pendulum
    15·1 answer
  • A car initially at rest accelerates at 10m/s^2. The car’s speed after it has traveled 25 meters is most nearly... A.) 0.0m/s B.)
    12·1 answer
  • An object 7 cm tall is placed at different locations in front of a concave mirror whose radius of curvature is 64 cm. Determine
    15·1 answer
  • 5. What is the percent composition of sulfur in H2SO4?
    5·2 answers
  • g Design single input op-amp circuits with with closed loop gains of −10, +10, +1 and −1. Use 10kΩ for the feedback resistor Rf
    15·1 answer
  • Where is the potential energy of a swing the greatest?
    7·2 answers
  • : Assume the cell surface is not slipping along the endothelium (the velocity of the point of contact is zero with respect to a
    11·1 answer
  • Explain the working of thermos flask in simple and easy words ​
    8·1 answer
  • Imamu’s car is travelling twice as fast as Mosi’s car. Mosi travels 200 km in 2 hours. How long does it take Imamu to travel 50
    14·1 answer
  • Which are the products in the equation CH3SH + 4O2 → CO2 + SO2 +2H2O? Check all that apply. CH3SH, O2 ,CO2, SO2, H2O
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!