To solve this problem it is necessary to apply the concepts related to Hooke's Law as well as Newton's second law.
By definition we know that Newton's second law is defined as

m = mass
a = Acceleration
By Hooke's law force is described as

Here,
k = Gravitational constant
x = Displacement
To develop this problem it is necessary to consider the two cases that give us concerning the elongation of the body.
The force to keep in balance must be preserved, so the force by the weight stipulated in Newton's second law and the force by Hooke's elongation are equal, so

So for state 1 we have that with 0.2kg there is an elongation of 9.5cm


For state 2 we have that with 1Kg there is an elongation of 12cm


We have two equations with two unknowns therefore solving for both,


In this way converting the units,


Therefore the spring constant is 313.6N/m
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction.
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
Surface area and Mass
When a leaf falls, it is being accelerated by gravity to the ground but opposed by air resistance also the drag. The net force on a leaf will therefore be calculated by subtracting its weight of the leaf from its drag.
<h3>What is Air resistance ?</h3>
Air exerts a force known as air resistance. When an object is travelling through the air, the force works in the opposite direction.
- While a sports vehicle with a streamlined design will encounter reduced air resistance and experience less drag, the automobile will be able to move more quickly than a truck with a flat front.
- The speed, area, and shape of the object passing through the air all affect air resistance. Air density and resistance are affected by altitude, temperature, and humidity. The resistance increases with speed and area, respectively.
Learn more about Air resistance here:
brainly.com/question/27965545
#SPJ4