Answer:
P=6.25N and Q=16.25N
Explanation:
In order to solve this problem we must first draw a free body diagram for both situation, (see attached picture).
Now, we need to analyze the two free body diagrams. So let's analyze the first diagram. Since the body is accelerated, then the sum of forces is equal to mass times acceleration, so we get:

We can assume there will be only the two mentioned forces P and Q, so
the sum of forces will be:
P+Q=ma

P+Q=22.5N
We can do the same analysis for the second free body diagram:


Q-P=10.5N
so now we have a system of equations we can solve by elimination:
Q+P=22.5N
Q-P=10.5N
Now, we can add the two equations together so the P force is eliminated, so we get:
2Q=32.5N
now we can solve for Q:

so
Q=16.25N
Now we can use any of the equations to find P.
Q+P=22.5N
P=22.5N-Q
when substituting for Q we get:
P=22.5N-16.25N
so
P=6.25N
The resistance of a circuit is a measure of the energy
that a current loses while flowing through the circuit.
Ease or difficulty is not a helpful concept in the case of
an electrical circuit.
The resultant vector is 11√2 km due north east.
<h3><u>Explanation:</u></h3>
The vector is a type of quantity which has both magnitude and direction. This quantities when expressed needs to specify both magnitude and direction.
We need to calculate the magnitude and direction separately.
Here firstly for the magnitude,
The magnitudes are both 11 km and they are at right angles to each other.
So, the resultant magnitude = √(11² +11²) km
=11√2 km
Now for the direction, one vector is due north and the other is due east.
So the resultant vector is due north east.
So the final vector is 11√2 km due North-East.
The answer is “boiling point”
It is Yellow, Cyan, Magenta . The answer is D.