Answer:
These are Diffraction Grating Questions.
Q1. To determine the width of the slit in micrometers (μm), we will need to use the expression for distance along the screen from the center maximum to the nth minimum on one side:
Given as
y = nDλ/w Eqn 1
where
w = width of slit
D = distance to screen
λ = wavelength of light
n = order number
Making x the subject of the formula gives,
w = nDλ/y
Given
y = 0.0149 m
D = 0.555 m
λ = 588 x 10-9 m
and n = 3
w = 6.6x10⁻⁵m
Hence, the width of the slit w, in micrometers (μm) = 66μm
Q2. To determine the linear distance Δx, between the ninth order maximum and the fifth order maximum on the screen
i.e we have to find the difference between distance along the screen (y₉-y₅) = Δx
Recall Eqn 1, y = nDλ/w
given, D = 27cm = 0.27m
λ = 632 x 10-9 m
w = 0.1mm = 1.0x10⁻⁴m
For the 9th order, n = 9,
y₉ = 9 x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.015m
Similarly, for n = 5,
y₅ = 5x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.0085m
Recall, Δx = (y₉-y₅) = 0.015 - 0.0085 = 0.0065m
Hence, the linear distance Δx between the ninth order maximum and the fifth order maximum on the screen = 6.5mm
Answer:
The bucket was the dropped from 56 th floor.
Explanation:
Given that,
Height of floor = 4.9 m
Height of 14 floor = 68.6 m
Time taken = 1 sec
We need to calculate the speed of the bucket
Using equation of motion

Put the value into the formula



We need to calculate the time
Using equation of motion


Put the value into the formula


We need to calculate the distance
Using equation of motion


Put the value into the formula


We need to calculate the number of floor

Put the value into the formula


The bucket was the dropped from

Hence, The bucket was the dropped from 56 th floor.
Answer:
When the time of fall is doubled, the height of fall will be quadrupled
Explanation:
Given;
height of fall, h = d m
time of fall, t = t s
initial velocity of the object, u = 0 m/d
The height of fall of the object is calculated from the kinematic equation below;

where;
g is acceleration due to gravity, which is constant
if the time of fall is doubled, the height of fall is calculated as;
Therefore, when the time of fall is doubled, the height of fall will be quadrupled
Most objects move at a constant speed because of friction and acceleration. The constant speed keeps them in place, and keeps a balance.