..........................................................
Answer:
Explanation:
The formula that you are working with is F = m*a
Since mass is one part of the formula if you increase the mass, you are going to increase the force.
The second one is much more difficult to answer because it is basically incomplete. This is one way to interpret it. If you start at a certain speed and increase during a known time period then effectively you are defining acceleration which is "a" in the formula.
Without those modifications, there is no answer.
Answer:
Heat capacity, Q = 781.74 Joules
Explanation:
Given the following data;
Mass = 12g
Initial temperature = 28.3°C
Final temperature = 43.87°C
Specific heat capacity of water = 4.184J/g°C
To find the quantity of heat needed?
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 43.87 - 28.3
dt = 15.57°C
Substituting into the equation, we have;
Q = 781.74 Joules
Explanation:
The total energy of an aircraft flying in the atmosphere can be calculated using equation 1. [2]
E = ½ m v2 + mgh
A Boeing 737-300 has a maximum takeoff weight of 5.65 × 104 kg, a cruise altitude of h = 10,195 m, and cruise speed of 221 m/sec. Inserting these numbers into the above equation, we obtain 7.03 GJ for the energy at cruise conditions. [3] However, the engines mounted onto the wings of the plane are required to provide additional energy per time, power, in order to keep the aircraft flying at a constant altitude and speed
Work is the energy needed to apply a force to move an object a particular distance, where force is parallel to the displacement. Power is the rate at which that work is done.