Answer:
Explanation:
A ball is thrown vertically upward with a certain Kinetic Energy in the absence of air resistance and while returning it experiences air resistance.
Air resistance causes the ball to lose its kinetic energy as it provides resistance which will convert some of its kinetic energy to heat energy.
So in a way total energy is conserved but not kinetic energy as some portion of it is lost in the form of heat.
Answer:
Explanation:
a)
Ff = μmgcosθ
Ff = 0.28(1600)(9.8)cos(-84)
Ff = 458.9217...
Ff = 460 N
b) ignoring the curves required at top and bottom which change the friction force significantly, especially at the bottom where centripetal acceleration will greatly increase normal forces and thus friction force.
W = Ffd
W = 458.9217(-49.4/sin(-84)
W = 22,795.6119...
W = 23 kJ
c) same assumptions as part b
The change in potential energy minus the work of friction will be kinetic energy.
KE = PE - W
½mv² = mgh - (μmgcosθ)d
v² = 2(gh - (μgcosθ)(h/sinθ))
v = √(2gh(1 - μcotθ))
v = √(2(9.8)(49.4)(1 - 0.28cot84))
v = 30.6552...
v = 31 m/s
The ball's horizontal component of velocity (ie it's horizontal speed) is 20 cos 40degrees. Without knowing the distance of the ball to the wall it's difficult to go further ...