Answer:
With Br2 - Bromobenzene
With Cl2 - Chlorobenzene
With HNO3- Nitrobenzene
With H2SO4 - Benzenesulphonic acid
With HCOCl - Benzoyl chloride
With 1-chloro-2,2-dimethylpropane - 2,2dimethyl-1-phenyl propane
Explanation:
The common thread joining all these reactions is that they are all electrophillic reactions. They are so called because the attacking agents in each reagent is an electrophile. Electrophiles are species that have electron deficient centers and are known to attack molecules that are high in electron density at regions of high electron density.
The benzene molecule has rich electron density. Any substituents that donates electrons to the ring improves the likelihood that benzene will undergo electrophillic substitution reactions while electron withdrawing substituents decrease the likelihood that benzene will undergo electrophillic substitution reactions.
The names of the compounds formed when benzene undergoes electrophillic reaction with the attacking agents listed in the question are displayed in the answer section.
So in your question that ask to calculate the Ph result of the resulting solution if 26 ml of 0.260 M HCI(aq) is added to the following substance. The the result are the following:
A. The result is pH= 14-pOH
B. There are 10ml of 0.26m HCL excees in this reaction so the answer is log(H)+
Answer:
76.9L
Explanation:
Based on the graph, whenever the temperature increases by 100K, the volume increases by 10L, so do 769/10
We will balance the equation in the following order: metals, amethals, carbon, hydrogen and oxygen (the most common order).
The metal present in the equation is Sr, which is already balanced (there are 1 on each side of the equation).
The amethal present in the equation is Cl. There is 2 Cl in the left side and only one in the right side. So, we will multiply the quantity of the molecule that contains Cl by 2. Doing this, we'll obtain:
Looking at the equation, we can see that it is now fully balanced. Hence, a balanced equation of the reaction is:
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.