Contact transmission<span> is the most common form of </span>transmitting<span> diseases and virus. There are two types of contact </span>transmission<span>: </span>direct<span> and </span>indirect<span>. </span>Direct<span> contact</span>transmission<span> occurs when there is physical contact between an infected person and a susceptible person. Cheers and god bless
AlexFray555
Please put brainliest!</span>
Answer:
C
Explanation:
The answer is C because only that amount can move
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
Answer: check explanation
Explanation:
In this question we are to find mass. In order to calculate the Mass, We need the values of two parameters, that is, the values given for the grade tow chain, and the value given for the mass per length.
Assuming the mass per length is 3 Kilogram per metre(kg/m) and the grade 70 tow chain length is 5 metre(m).
Therefore, the formula for calculating mass of the chain is given below;
Mass of the chain= mass per unit length(kg/m) × length ---------------------------------------------------------------------------------------------------------------------(1).
Mass of the chain= 3 kg/m × 5 m.
Mass of the chain= 15 kg.
We know that to relate solutions of with the factors of molarity and volume, we can use the equation:

**
NOTE: The volume as indicated in this question is defined in L, not mL, so that conversion must be made. However it is 1000 mL = 1 L.
So now we can assign values to these variables. Let us say that the 18 M

is the left side of the equation. Then we have:

We can then solve for

:

and

or

We now know that the total amount of volume of the 4.35 M solution will be
210 mL. This is assuming that the entirety of the 50 mL of 18 M is used and the rest (160 mL) of water is then added.