1,2-dimbromopropane would be something like C which is the second best answer.
B would be correct if it had another carbon.
A is like C but incorrect for the same reason. 1,2-dibromoethane is what A is.
The answer has to be D where the bromines are right across from each other.
Answer:
It's 10 cenimeters per second
Answer:
The equilibrium concentration of NO is 0.001335 M
Explanation:
Step 1: Data given
The equilibrium constant Kc is 0.0025 at 2127 °C
An equilibrium mixture contains 0.023M N2 and 0.031 M O2,
Step 2: The balanced equation
N2(g) + O2(g) ↔ 2NO(g)
Step 3: Concentration at the equilibrium
[N2] = 0.023 M
[O2] = 0.031 M
Kc = 0.0025 = [NO]² / [N2][O2]
Kc = 0.0025 = [NO]² / (0.023)(0.031)
[NO] = 0.001335 M
The equilibrium concentration of NO is 0.001335 M
Answer:
pH = 11.95≈12
Explanation:
Remember the reaction among aqueous acetic acid (
) and aqueous sodium hydroxide (NaOH)

First step. Need to know how much moles of the substances are present
= 0.0025 mol NaOH
0.003 mol NaOH *
/ 1 mol NaOH = 0.003 mol CH_3COOH[/tex]
NaOH is in excess. Now, how much?
0.003 mole NaOH - 0.0025 mole NaOH = 0.0005 mole NaOH
Then, that amount in excess would be responsable for the pH.
Third step. Know the pH
Remember that pH= -log[H+]
According to the dissociation of water equilibrium
Kw=[H+]*[OH-]= 10^(-14)
The dissociation of NaOH is
NaOH -> 
Now, concentration of OH^{-}[/tex] would be given for the excess of NaOH.
[OH-]= 0.0005 mole / 0.055 L = 0.00909 M
Careful: we have to use the total volumen
Les us to calculate pH
![pH= -log [H+]\\pH= -log \frac{K_w}{[OH-]} \\pH= 11.95](https://tex.z-dn.net/?f=pH%3D%20-log%20%5BH%2B%5D%5C%5CpH%3D%20-log%20%5Cfrac%7BK_w%7D%7B%5BOH-%5D%7D%20%5C%5CpH%3D%2011.95)
metal rusting in salt water