Answer:
2f
Explanation:
The formula for the object - image relationship of thin lens is given as;
1/s + 1/s' = 1/f
Where;
s is object distance from lens
s' is the image distance from the lens
f is the focal length of the lens
Total distance of the object and image from the lens is given as;
d = s + s'
We earlier said that; 1/s + 1/s' = 1/f
Making s' the subject, we have;
s' = sf/(s - f)
Since d = s + s'
Thus;
d = s + (sf/(s - f))
Expanding this, we have;
d = s²/(s - f)
The derivative of this with respect to d gives;
d(d(s))/ds = (2s/(s - f)) - s²/(s - f)²
Equating to zero, we have;
(2s/(s - f)) - s²/(s - f)² = 0
(2s/(s - f)) = s²/(s - f)²
Thus;
2s = s²/(s - f)
s² = 2s(s - f)
s² = 2s² - 2sf
2s² - s² = 2sf
s² = 2sf
s = 2f
Answer:
The correct answer would be Saturn's Cassini Division.
Explanation:
Read about it here.
https://caps.gsfc.nasa.gov/simpson/kingswood/rings/
Hope this helps! :)
Answer:
are sure this is a question
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum,

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s