1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
10

What is the relationship between temperature and height in the troposphere ,stratosphere,mesophere,thermosphere,exosphere

Physics
1 answer:
Soloha48 [4]3 years ago
3 0

In general the higher we go the cooler it becomes . temperature fall continues within the lowermost layer of our atmosphere, known as the troposphere. Above the troposphere, the stratosphere exists and in this region the temperature increases with an increase in altitude. The mesosphere is the part of the atmosphere that lies above the stratosphere. In this region, the temperature falls with an increase in altitude. And finally as we continue rising up, we reach the thermosphere, where the temperature increases with increased altitude.

You might be interested in
How does mass differ from weight? List 2 differences.
Alinara [238K]

weight is vector vary from place to place

5 0
3 years ago
Read 2 more answers
Newton's first law of motion is sometimes called the law of _________.
Gre4nikov [31]
Newtons first law of motion is also known as the law of inertia
3 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Explain Why a flying aeroplane has more Kinetic Energy than a flying insect?
Airida [17]

Answer:

Why do insects fly so high?

Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift.

Why an Aeroplane flying has kinetic  

A flying aeroplane has potential energy has it flies above the ground level. And since the aeroplane is flying motion is associated with it and thus possesses kinetic energy. Hence a flying aeroplane has both potential and kinetic energ

Explanation:

5 0
3 years ago
Part 1 of 2
Readme [11.4K]

Answer:

I got you.. i'm in middle school and had that same question.

Explanation:

Refer to the diagram shown below.

The vertical distance traveled is

s = 25 m

The initial vertical launch velocity is zero.

Therefore

s = (1/2)*g*t²

where g = 9.8 m/s²

t = the time of flight, s

That is,

0.5*9.8*t² = 25

t² = 25/4.9 = 5.102

t = 2.26 s

Answer: 2.26 s

3 0
3 years ago
Other questions:
  • The placebo effect best illustrates the impact of______on relief from pain.
    14·2 answers
  • A manganese atom is pictured below.
    5·2 answers
  • Knowing that 1 inch is equal to 2.54 centimeters, convert 287 cm to inches.
    10·2 answers
  • 3. Infer A car is travelling down a
    7·1 answer
  • A projectile of mass m is fired straight upward from the surface of an airless planet of radius R and mass M with an initial spe
    7·1 answer
  • Reeti has a mass of 51.0 kg. The Gravitron, a ride that spins so fast that the floor can be removed without the riders falling,
    13·1 answer
  • Which of the following best describes pseudoscience?
    7·2 answers
  • The energy stored in foods and fuels is chemical potential energy?
    13·1 answer
  • Explain the process of photosynthesis, se sure to include the reactants and products.
    14·1 answer
  • ] After treatment, hospital equipment may become contaminated.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!