1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
8

Homes may be heated by pumping hot water through radiators. What mass of water (in g) will provide the same amount of heat when

cooled from 90.7 to 39.4°C, as the heat provided when 182 g of steam is cooled from 118°C to 100.°C. (Assume that the specific heat of liquid water is 4.187 J/g·°C over the given temperature range. Also assume that the specific heat of water vapor above its boiling point is 2.078 J/g·°C.)
Engineering
1 answer:
Nitella [24]3 years ago
3 0

Answer:

a mass of water required is mw= 1273.26 gr = 1.27376 Kg

Explanation:

Assuming that the steam also gives out latent heat, the heat provided should be same for cooling the hot water than cooling the steam and condense it completely:

Q = mw * cw * ΔTw = ms * cs * ΔTw + ms * L

where m = mass , c= specific heat , ΔT=temperature change, L = latent heat of condensation

therefore

mw = ( ms * cs * ΔTw + ms * L )/ (cw * ΔTw )

replacing values

mw = [182g * 2.078 J/g°C*(118°C-100°C) + 118 g * 2260 J/g ] /[4.187 J/g°C * (90.7°C-39.4°C)] = 1273.26 gr = 1.27376 Kg

You might be interested in
How does the two-stroke Otto cycle differ from the four-stroke Otto cycle?
Digiron [165]

Answer:

Two stroke cycle                                               Four stroke cycle

1.Have on power stroke in one revolution.   1.have one power  

                                                                   stroke in two  revolution                                                                            

2.Complete the cycle in 2 stroke                 2.Complete the cycle in 4 stroke    

3.It have ports                                                3.It have vales

                                                                         

4.Greater requirement of cooling              4.Lesser requirement of cooling  

5.Less thermal efficiency                            5.High thermal efficiency

6.Less volumetric efficiency                       6.High volumetric efficiency    

7.Size of flywheel is less.                           7.Size of flywheel is more.

3 0
3 years ago
A small pad subjected to a shearing force is deformed at the top of the pad 0.08 in. The height of the pad is 1.38 in. What is t
Aleksandr-060686 [28]

Answer:

The shear strain is 0.05797 rad.

Explanation:

Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.

Step1

Given:

Height of the pad is 1.38 in.

Deformation at the top of the pad is 0.08 in.

Calculation:

Step2

Shear strain is calculated as follows:

tan\phi=\frac{\bigtriangleup l}{h}

tan\phi=\frac{0.08}{1.38}

tan\phi= 0.05797

For small angle of \phi, tan\phi can take as\phi.

\phi = 0.05797 rad.

Thus, the shear strain is 0.05797 rad.

7 0
3 years ago
. Using the Newton Raphson method, determine the uniform flow depth in a trapezoidal channel with a bottom width of 3.0 m and si
Over [174]

Answer:

y  ≈ 2.5

Explanation:

Given data:

bottom width is 3 m

side slope is 1:2

discharge is 10 m^3/s

slope is 0.004

manning roughness coefficient is 0.015

manning equation is written as

v =1/n R^{2/3} s^{1/2}

where R is hydraulic radius

S = bed slope

Q = Av =A 1/n R^{2/3} s^{1/2}

A = 1/2 \times (B+B+4y) \times y =(B+2y) y

R =\frac{A}{P}

P is perimeter =  (B+2\sqrt{5} y)

R =\frac{(3+2y) y}{(3+2\sqrt{5} y)}

Q = (2+2y) y) \times 1/0.015 [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} 0.004^{1/2}

solving for y100 =(2+2y) y) \times (1/0.015) [\frac{(3+2y) y}{(3+2\sqrt{5} y)}]^{2/3} \times 0.004^{1/2}

solving for y value by using iteration method ,we get

y  ≈ 2.5

5 0
3 years ago
A car travells at 67.5 km\h in 120 km.how long will it take to reach the destination
Kruka [31]

mark me the brainiest here

average speed (in km/h) of a car stuck in traffic that drives 12 kilometers in 2 hours.

5 0
3 years ago
A disk of radius 2.1 cm has a surface charge density of 5.6 µC/m2 on its upper face. What is the magnitude of the electric field
Assoli18 [71]

Answer:

=6.3*10^3 N/C

Explanation:

solution:

from this below equation (1)

E=σ/2εo(1-\frac{z}{\sqrt{z^2-R^2} } )...........(1)

we obtain:

=5.6*10^-6 \frac{c}{m^2} /2(8.85*10^-12\frac{c^2}{N.m^2} ).(1-\frac{9.5 cm}{\sqrt{9.5^2-2.1^2} } )

=6.3*10^3 N/C

8 0
3 years ago
Other questions:
  • Can anybody teach me how to make an app with flask and pygame together?​
    10·1 answer
  • What kind or kinds of engineers does take to design a drone and why?
    11·1 answer
  • "The office personnel at Garden Glory use a database application to record services and related data changes in this database. F
    9·1 answer
  • 1. A copper block of volume 1 L is heat treated at 500ºC and now cooled in a 200-L oil bath initially at 20◦C. Assuming no heat
    10·1 answer
  • Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
    5·1 answer
  • The cross-section of a rough, rectangular, concrete() channel measures . The channel slope is 0.02ft/ft. Using the Darcy-Weisbac
    8·1 answer
  • Realize the function f(a, b, c, d, e) = Σ m(6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 25, 28)using a 16-to-1 MUX with control
    13·1 answer
  • A piston–cylinder device containing carbon dioxide gas undergoes an isobaric process from 15 psia and 80°F to 170°F. Determine t
    15·1 answer
  • Consider a single crystal of nickel oriented such that a tensile stress is applied along a [001] direction. If slip occurs on a
    6·1 answer
  • What is mechanical engineer​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!