1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
4 years ago
14

when a metal, such as lead, is oxidied (loses electrons) to form a positive ion (cation), how does he solubility change?

Engineering
1 answer:
o-na [289]4 years ago
8 0

Answer: The size of the ion and the charge of the ion are the factors that affect solubility in water.

Explanation:

Lead lose electrons to become cations. Compounds with small ions tend to be less soluble than compounds with large ions. Large ions have higher solubility. This is because small ions are closely packed so it is difficult for water to break them apart.

Compounds with small ions seemingly have less solubility than those with large ions. The ions in the compound attract each other, and the water molecules attract the ions. Compounds would be soluble in water If the water molecules have a greater or higher attraction to the ions than ions have for each other.

You might be interested in
The electron concentration in silicon at T = 300 K is given by
puteri [66]

Answer:

E=1.44*10^-7-2.6exp(\frac{-x}{18} )v/m

Explanation:

From the question we are told that:

Temperature of silicon T=300k

Electron concentration n(x)=10^{16}\exp (\frac{-x}{18})

                                        \frac{dn}{dx}=(10^{16} *(\frac{-1}{16})\exp\frac{-x}{16})

Electron diffusion coefficient is Dn = 25cm^2/s \approx 2.5*10^{-3}

Electron mobility is \mu n = 960 cm^2/V-s \approx0.096m/V

Electron current density Jn = -40 A/cm^2 \approx -40*10^{4}A/m^2

Generally the equation for the semiconductor is mathematically given by

Jn=qb_n\frac{dn}{dx}+nq \mu E

Therefore

-40*10^{4}=1.6*10^{-19} *(2.5*10^{-3})*(10^{16} *(\frac{-1}{16})\exp\frac{-x}{16})+(10^{16}\exp (\frac{-x}{18}))*1.6*10^{-19}*0.096* E

E=\frac{-2.5*10^-^7 exp(\frac{-x}{18})+40*10^{4}}{1.536*10^-4exp(\frac{-x}{18} )}

E=1.44*10^-7-2.6exp(\frac{-x}{18} )v/m

7 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
As a means of preventing ice formation on the wings of a small, private aircraft, it is proposed that electric resistance heatin
DIA [1.3K]

Answer:

Average heat flux=3729.82 W/m^{2}

Explanation:

7 0
3 years ago
In a team, a person’s efforts are less identifiable than when that person works independently. Because the person’s efforts are
Eduardwww [97]
The answer is deindividuation - a psychological state in which a person does not feel individual responsibility.
3 0
3 years ago
What type of cut is mainly done with the radial arm saw?
Dahasolnce [82]

Answer:

crosscut

Explanation:

8 0
2 years ago
Other questions:
  • A ring-shaped seal, made from a viscoelastic material, is used to seal a joint between two rigid pipes. When incorporated in the
    5·1 answer
  • Consider the following program:
    15·1 answer
  • The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
    9·1 answer
  • An iron-carbon alloy initially containing 0.286 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1200°
    7·1 answer
  • 14. Tires are rotated to
    12·2 answers
  • Suppose that tank holds 1% liquid water by volume and 99% vapor water by volume at a temperature of 185oC. What is the quality?
    10·1 answer
  • Consider a standard room thermostat. Determine the sensor, transducer, output, and control stages for this measurement system.
    13·1 answer
  • What must engineers keep in mind so that their solutions will be appropriate?
    15·1 answer
  • Identify renewable energy sources you will propose. Explain the key elements to your solution and the basic technical principles
    5·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!