Explanation:
both reduction and oxidation are occurring simultaneously, this is known as a redox reaction. An oxidizing agent is substance which oxidizes something else. In the above example, the iron(III) oxide is the oxidizing agent. A reducing agent reduces something else
The two of them both made models of the current atom, which was very excellent because now we could imagine how an atom would look. I would say that the best one was the electron orbital configuration because we needed to know what valence electrons are.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
day and night is the main way you can tell as well as the stars moving across the sky, and we can tell it rotates by looking at the sky and seeing the sun move across the sky during the day.