Answer:
Au
Explanation:
Look at a periodic table it can help you a lot.
<u>Answer:</u>
Force = 20N
acceleration (a) = 1.5 m/s²
Mass of object (m) = ?
<u>From Newtons II law</u>
<em> F = m. a N</em>
m = F/a
m = 20/1.5
<em> m = 13.34 Kg</em>
<em>Mass of an object is 13.34 Kg</em>
Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
Answer:
Physiological – special ways that animals' bodies work to help them survive in whatever condition they're in, such as camels in the desert conserving water and being able to go days without drinking.
Explanation: