Answer:
13.1
Explanation:
that's what I'm gonna go with, but u can research more
The gravitational force between two object depends on their masses and on their distance.
Since the formula is

If the masses grow, the force also grows. But I'm assuming the two objects are fixed, so you can't enlarge their mass.
So, the only option remaining is to lower their distance: since it sits at the denominator, a smaller value of d results in a bigger value for F.
So, if you reduce the distance between two objects, the gravitational force between them will always result in an increase
Answer:
5) Displacement = +3.125 m
Displacement is in the same direction as the force vector.
6) Force = -53.89 N
Force is in an opposite direction relative to the displacement.
Explanation:
5) We are given;
Force; F = 160 N.
Workdone; W = +500 J
Now, formula for workdone is;
W = Force × displacement
Thus, displacement = Work/force
Displacement = 500/160
Displacement = +3.125 m
Thus, displacement is in the same direction as the force vector.
6) We are given;
Displacement; d = 18 m.
Workdone; W = -970 J
Like in the first answer above,
Workdone = Force × Displacement
Thus;
Force = Workdone/Displacement
Force = -970/18
Force = -53.89 N
Since force is negative and displacement is positive, it means force is in an opposite direction relative to the displacement.
Answer:
Explanation:
We shall apply law of conservation of momentum during the collision of ball A and B .
Total momentum before collision of A and B = .35 x 10 = 3.5 kg m/s
Let the velocity of B after collision be v .
Total momentum after collision = .35 x 2 + .35v
According to law of conservation of momentum
.35 x 2 + .35v = 3.5
.35 v = 2.8
v = 8 m /s .
The direction of B will be same as direction of A .
Answer:
Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a speed of 4.20 m/s from a height h = 0.950 m. Marble 2 is launched from ground level with a speed of 5.94 m/s at an angle above the horizontal. (a) Where would the marbles collide in the absence of gravity? Give the x and y coordinates of the collision point. (b) Where do the marbles collide given that gravity produces a downward acceleration of g = 9.81 m/s2? Give the x and y coordinates.
Explanation:
i want the answer i don't know