Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
Simple dimensional analysis.
okay so youll need a periodic table to look up the molar mass. youll be given either an amount of grams or moles.
Answer:
The answer to your question is: letter A
Explanation:
A combination reaction is when there are two reactants that gives only one product.
a. 2SO2 + O2—> 2SO3 This is a combination reaction,
2 reactants gives one product.
b. Zn + Cu(NO3)2–>Zn(NO3)2 + Cu This is not a combination reaction,
it's a single replacement reaction.
c. 2H2O2–> 2H2O+O2 This is a decomposition reaction
d. AgNO3 + NaCl → AgCl+NaNO3 THis is a double replacement reaction.
very cold temperatures
Explanation:
A superconductor performs best at very cold temperatures.
A superconductor is a perfect conductor that is able to allow the passage of electricity and heat without resistance.
- In superconductors, under certain conditions, resistance ceases to exist.
- Examples are aluminium, niobium e.t.c
- A conductor allows heat and current to pass through but with little resistance.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly