The reducing agent is donating electrons and therefore becoming oxidised itself. In this scenario elemental zinc (Zn) is in a reduced state and is oxidised to become Zn2+, in doing so it donates electrons to Fe2+, thereby reducing it to elemental iron (Fe).
The elemental Zinc in solid state is therefore the reducing agent as it reduces Fe2+ to Fe(s).
Answer:
The specific heat capacity of the metal is 0.268 J/g°C
Explanation:
Step 1: Data given
Mass of the metal = 151.5 grams
The temperature of the metal = 75.0 °C
Temperature of water = 15.1 °C
The temperature of the water rises to 18.7°C.
The specific heat capacity of water is 4.18 J/°C*g
Step 2: Calculate the specific heat capacity of the metal
heat lost = heat gained
Q = m*c*ΔT
Qmetal = - Qwater
m(metal) * c(metal) * ΔT(metal) = m(water) * c(water) * ΔT(water)
⇒ mass of the metal = 151.5 grams
⇒ c(metal) = TO BE DETERMINED
⇒ΔT( metal) = T2 - T1 = 18.7 °C - 75.0 °C = -56.3 °C
⇒ mass of the water = 151.5 grams
⇒ c(water) = 4.184 J/g°C
⇒ ΔT(water) = 18.7° - 15.1 = 3.6 °C
151.5g * c(metal) * -56.3°C = 151.5g * 4.184 J/g°C * 3.6 °C
c(metal) = 0.268 J/g°C
The specific heat capacity of the metal is 0.268 J/g°C
Oxidation half reaction is written as follows when using using reduction potential chart
example when using copper it is written as follows
CU2+ +2e- --> c(s) +0.34v
oxidasation is the loos of electron hence copper oxidation potential is as follows
cu (s) --> CU2+ +2e -0.34v
This is the shortest answer, you can google: net meter, inverter, solar panels and the roof system for a shorter one.
The roof system
In most solar systems, solar panels are placed on the roof. An ideal site will have no shade on the panels, especially during the prime sunlight hours of 9 a.m. to 3 p.m.; a south-facing installation will usually provide the optimum potential for your system, but other orientations may provide sufficient production. Trees or other factors that cause shading during the day will cause significant decreases to power production. The importance of shading and efficiency cannot be overstated. In a solar panel, if even just one of its 36 cells is shaded, power production will be reduced by more than half. Experienced installation contractors such as NW Wind & Solar use a device called a Solar Pathfinder to carefully identify potential areas of shading prior to installation.
Not every roof has the correct orientation or angle of inclination to take advantage of the sun's energy. Some systems are designed with pivoting panels that track the sun in its journey across the sky. Non-tracking PV systems should be inclined at an angle equal to the site’s latitude to absorb the maximum amount of energy year-round. Alternate orientations and/or inclinations may be used to optimize energy production for particular times of day or for specific seasons of the year.
Solar panels
Solar panels, also known as modules, contain photovoltaic cells made from silicon that transform incoming sunlight into electricity rather than heat. (”Photovoltaic” means electricity from light — photo = light, voltaic = electricity.)
Solar photovoltaic cells consist of a positive and a negative film of silicon placed under a thin slice of glass. As the photons of the sunlight beat down upon these cells, they knock the electrons off the silicon. The negatively-charged free electrons are preferentially attracted to one side of the silicon cell, which creates an electric voltage that can be collected and channeled. This current is gathered by wiring the individual solar panels together in series to form a solar photovoltaic array. Depending on the size of the installation, multiple strings of solar photovoltaic array cables terminate in one electrical box, called a fused array combiner. Contained within the combiner box are fuses designed to protect the individual module cables, as well as the connections that deliver power to the inverter. The electricity produced at this stage is DC (direct current) and must be converted to AC (alternating current) suitable for use in your home or business.
Inverter
The inverter is typically located in an accessible location, as close as practical to the modules. In a residential application, the inverter is often mounted to the exterior sidewall of the home near the electrical main or sub panels. Since inverters make a slight noise, this should be taken into consideration when selecting the location.
The inverter turns the DC electricity generated by the solar panels into 120-volt AC that can be put to immediate use by connecting the inverter directly to a dedicated circuit breaker in the electrical panel.
The inverter, electricity production meter, and electricity net meter are connected so that power produced by your solar electric system will first be consumed by the electrical loads currently in operation. The balance of power produced by your solar electric system passes through your electrical panel and out onto the electric grid. Whenever you are producing more electricity from your solar electric system than you are immediately consuming, your electric utility meter will turn backwards!
Net meter
In a solar electric system that is also tied to the utility grid, the DC power from the solar array is converted into 120/240 volt AC power and fed directly into the utility power distribution system of the building. The power is “net metered,” which means it reduces demand for power from the utility when the solar array is generating electricity – thus lowering the utility bill. These grid-tied systems automatically shut off if utility power goes offline, protecting workers from power being back fed into the grid during an outage. These types of solar-powered electric systems are known as “on grid” or “battery-less” and make up approximately 98% of the solar power systems being installed today.
Answer:
Explanation:
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is ²³Na. The free metal does not occur in nature, and must be prepared from compounds.