1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
3 years ago
9

Calculate thr number of photons having a wavelength of 10.0 μm required to produce 1.0 kJ of energy.

Chemistry
2 answers:
slega [8]3 years ago
7 0

Answer:

The number of photons are 5.028\times 10^{27}.

Explanation:

E=\frac{h\times c}{\lambda}

where,

E = energy of photon =  

h = Planck's constant = 6.63\times 10^{-34}Js

c = speed of light = 3\times 10^8m/s

\lambda = wavelength = 10.0 μm  =10^{-5} m

1 μm = 10^{-6} m

E=\frac{6.63\times 10^{-34}Js\times 3\times 10^8m/s}{10^{-5} m}

E=1.989\times 10^{-20} Joules

Let the n number of photons with energy equal to E' = 1.0 kJ = 1000 J

n\times E=E'

n\times 1.989\times 10^{-20} J=1000 J

n=\frac{1000 J}{1.989\times 10^{-20} J}=5.028\times 10^{27}

The number of photons are 5.028\times 10^{27}.

ddd [48]3 years ago
4 0
Ok so first you need to figure out the energy of ONE photon with that wavelength. Using E=hc/lambda, you get E= 1.99 * 10^-20 J/photon. Now, how many photons do you need to add up to get to one kilojoule=1000 joules? 1000J / (1.99 * 10^-20 J/photon) = approximately 5 * 10^22 photons hope this helps
You might be interested in
I need the answer for the first question 1.
sp2606 [1]

metal salt acid hydroyon and why cuz I guessed and I haven't t learned this yet and I need points

4 0
3 years ago
1.00 M CaCl2 Density = 1.07 g/mL
Lesechka [4]

Explanation:

Molarity of solution = 1.00 M = 1.00 mol/L

In 1 L of solution 1.00 moles of calcium chloride is present.

Mass of solute or calcium chloride = m

m = 1 mol\times 111 g/mol = 111 g

Mass of solution = M

Volume of solution = V = 1L = 1000 mL

Density of solution , d= 1.07 g/mL

M=d\times V=1.07 g/mL\times 1000 mL=1,070 g

1) The value of %(m/M):

\frac{m}{M}\times 100=\frac{111 g}{1,070 g}\times 100=10.37\%

2) The value of %(m/V):

\frac{m}{V}\times 100=\frac{111 g}{1000 L}\times 100=11.1\%

Molality = \frac{\text{Moles of compound }}{\text{mass of solvent in kg}}

Normality=\frac{\text{Moles of compound }}{n\times \text{volume of solution in L}}

n = Equivalent mass

n = \frac{\text{molar mass of ion}}{\text{charge on an ion}}

3) Normality of calcium ions:

Moles of calcium ion = 1 mol (1 CaCl_2 mole has 1 mole of calcium ion)

n=\frac{40 g/mol}{2}=20

=\frac{1 mol}{20 g/mol\times 1L}=0.050 N

4) Normality of chlorine ions:

Moles of chlorine ion = 2 mol (1 CaCl_2 mole has 2 mole of chlorine ion)

n=\frac{35.5 g/mol}{1}=35.5

=\frac{2 mol}{35.5 g/mol\times 1L}=0.056 N

Moles of calcium chloride = 1.00 mol

Mass of solvent =  Mass of solution - mass of solute

= 1,070 g - 111 g = 959  g = 0.959 kg ( 1 g =0.001 kg)

5) Molality of the solution :

\frac{1 mol}{0.959 kg}=1.043 mol/kg

Moles of calcium chloride = n_1=1mol

Mass of solvent = 959 g

Moles of water = n_2=\frac{959 g}{18 g/mol}=53.28 mol

Mass of solvent = 959 g

6) Mole fraction of calcium chloride =

\chi_1=\frac{n_1}{n_1+n_2}=\frac{1mol}{1 mol+53.28 mol}=0.01842

7) Mole fraction of water =

\chi_2=\frac{n_2}{n_1+n_2}=\frac{53.28 mol}{1mol+53.28 mol}=0.9816

8) Mass of solution = m'

Volume of the solution= v = 100 mL

Density of solution = d = 1.07 g/mL

m'=d\times v=1.07 g/ml\times 100 g= 107 g

Mass of 100 mL of this solution 107 grams of solution.

9) Volume of solution = V = 100 mL

Mass of solution = M'' = 107 g

Mass of solute = m

The value of %(m/V) of solution = 11.1%

11.1\%=\frac{m}{100 mL}\times 100

m = 11.1 g

Mass of solvent = M''- m = 107 g -11.1 g = 95.9 g

95.9 grams of water was present in 100 mL of given solution.

3 0
3 years ago
How can an elements become ion​
Tanzania [10]
When a stable atom gains or loses its electrons then that’s when it becomes the ion.
7 0
3 years ago
Which metals have similar chemical properties? Check all that apply. barium
rodikova [14]
Alkina metals all have the similar proteries
6 0
3 years ago
What is the average velocity of atoms in 1.00 mol of argon (a monatomic gas) at 275 K? For m, use 0.0399 kg. (1 point)
valentinak56 [21]

What is the average velocity of atoms in 1.00 mol of argon (a monatomic gas) at 275 k for m, use 0.0399kg

Answer: The average velocity of the atoms 847.33 m/s.

Explanation:

Moles of the neon = 1.00

Temperature of the gas : 288 K

Mass of the gas = 0.01000

R = 8.31 J/mol K

The average velocity of the atoms 847.33 m/s.

6 0
3 years ago
Other questions:
  • Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. Th
    6·1 answer
  • A sample of a compound made entirely from copper and oxygen was found to have a total mass of 0.1431g The mass of the copper In
    11·1 answer
  • Do anyone know the answer please
    15·1 answer
  • Consider 80.0-g samples of two different compounds consisting of only carbon and oxygen. One of the compounds consists of 21.8 g
    6·1 answer
  • Which stage is the middle stage of speciation? (15 Points)
    6·1 answer
  • Which property indicates how light is reflected from a mineral’s surface?
    5·2 answers
  • Which of the following is a characteristic of the sun
    9·2 answers
  • 6th grade science i mark as brainliest​
    9·2 answers
  • Median of 4, 6 ,9 helppp​
    13·2 answers
  • 50 J of work was done on a system, as a result of which 29 J of heat energy was removed from it. How would this affect the inter
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!