1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer : The final pressure of the gas will be, 26.8 kPa
Explanation :
According to the Boyle's law, the pressure of the gas is inversely proportional to the volume of the gas at constant temperature of the gas and the number of moles of gas.

or,

or,

where,
= initial pressure of the gas = 209 kPa
= final pressure of the gas = ?
= initial volume of the gas = 10.0 L
= final volume of the gas = 78.0 L
Now put all the given values in this formula, we get the final pressure of the gas.


Therefore, the final pressure of the gas will be, 26.8 kPa
Empirical formula is the simplest way the molecular formula can be wrote so here 7 goes into all of these so it would be CH2O
The correct answer is B. Water that has condensed and formed water droplets on the ground, grass, and other outdoor objects is known as dew. It is water formed due to condensation in early morning or evening. It is formed when the temperature of the objects reach below the dew point of the air around.