1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar

d power cycle for which the working fluid is evaporated, passed through a turbine, and subsequently condensed. The system is to be used in very special locations for which the oceanic water temperature near the surface is approximately 300 K, while the temperature at reasonable depths is approximately 280 K. The warmer water is used as a heat source to evaporate the working fluid, while the colder water is used as a heat sink for condensation of the fluid. Consider a power plant that is to generate 2 MW of electricity at an efficiency (electric power output per heat input) of 3%. The evaporator is a heat exchanger consisting of a single shell with many tubes executing two passes. If the working fluid is evaporated at its phase change temperature of 290 K, with ocean water entering at 300 K and leaving at 292 K.
Required:
a. What is the heat exchanger area required for the evaporator?
b. What flovw rate must be maintained for the water passing through the evaporator?
Engineering
1 answer:
Dennis_Churaev [7]3 years ago
7 0

Answer:

a) the heat exchanger area required for the evaporator is 11178.236 m²

b) the required flow rate is 1993630.38 kg/s

Explanation:

Given the data in the question;

Water temperature near the surface = 300 K

temperature at reasonable depths ( cold ) = 280 K

power plant output W' = 2 MW

efficiency η = 3% = 0.03

we know that; efficiency η = W'_{power-out / Q_{supplied

we substitute

0.03 = 2 / Q_{supplied

Q_{supplied = 2 / 0.03

Q_{supplied = 66.667 MW = 66.667 × 10⁶ Watt

Th_{in = 300 K       Th_{out = 292 K

Tc_{in = 290 K       Tc_{out = 290 K    

Now, Heat transfer in evaporator;

Q = UA( LMTD )

so

LMTD = (ΔT₁ - ΔT₂) / ln( ΔT₁ / ΔT₂ )

first we get ΔT₁ and ΔT₂

ΔT₁ = Th_{in - Tc_{out  = 300 - 290 = 10 K

ΔT₂ = Th_{out - Tc_{in  = 292 - 290 = 2 K

so we substitute into our equation;

LMTD = (10 - 2) / ln( 10 / 2 )

LMTD = 8 / ln( 5 )

LMTD = 8 / 1.6094379

LMTD = 4.97

a) Heat transfer Area will be;

Q_H = UA( LMTD )

we substitute

66.667 × 10⁶ = 1200 × A × 4.97

66.667 × 10⁶  = 5964 × A

A = (66.667 × 10⁶) / 5964

A = 11178.236 m²

Therefore, the heat exchanger area required for the evaporator is 11178.236 m²

b) Flow rate  

we know that;

Q_H = m'C_P( T_{in - T_{out )  

specific heat capacity of water Cp = 4.18 (kJ/kg∙°C)

we substitute

66.667 × 10⁶ = m' × 4.18 × ( 300 - 292 )

66.667 × 10⁶ = m' × 33.44

m' = ( 66.667 × 10⁶ ) / 33.44

m' = 1993630.38 kg/s

Therefore, the required flow rate is 1993630.38 kg/s

You might be interested in
Technician A says test lights are great for performing simple tests. Technician B says you can use a test light to check SRS cir
adoni [48]

The technician that is correct about either testing lights for simple tests or to check SRS Circuits is; Technician A.

<h3>Which Technician is Correct?</h3>

First of all it is pertinent to note that test lights are generally small bulbs that are turned on by the voltage and current flowing through the circuit in analog circuits.

Now, the  two values ​​of voltage and current are high and sufficient to light up the bulb. However, in digital circuits, the current is very small in the order of milliamps, and as a result there is not enough power to turn on the lights.

Thus, we can conclude that Technician A is correct.

Read more about Correct Technician at; brainly.com/question/14449935

5 0
2 years ago
How can we love our country? Not by words but by deeds. - Jose P. Laurel
Vadim26 [7]

Answer:

1. You have the courage to help without expecting a reward.

2. Because actions are more eloquent than words. Actions are far more valuable and counted than  words, and that's how she inspired me.

3. Doing simple things that can make someone grateful and happy  without knowing that someone is inspired and motivated by your good deeds, and also doing some interesting things By.

Explanation:

6 0
2 years ago
Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
masya89 [10]

Answer:

The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C

Explanation:

The properties of water at 100°C and 1 atm are:

pL = 957.9 kg/m³

pV = 0.596 kg/m³

ΔHL = 2257 kJ/kg

CpL = 4.217 kJ/kg K

uL = 279x10⁻⁶Ns/m²

KL = 0.68 W/m K

σ = 58.9x10³N/m

When the water boils on the surface its heat flux is:

q=0.149h_{fg} \rho _{v} (\frac{\sigma (\rho _{L}-\rho _{v})}{\rho _{v}^{2} }  )^{1/4} =0.149*2257*0.596*(\frac{58.9x10^{-3}*(957.9-0.596) }{0.596^{2} } )^{1/4} =18703.42W/m^{2}

For copper-water, the properties are:

Cfg = 0.0128

The heat flux is:

qn = 0.9 * 18703.42 = 16833.078 W/m²

q_{n} =uK(\frac{g(\rho_{L}-\rho _{v})     }{\sigma })^{1/2} (\frac{c_{pL}*deltaT }{c_{fg}h_{fg}Pr  } \\16833.078=279x10^{-6} *2257x10^{3} (\frac{9.8*(957.9-0.596)}{0.596} )^{1/2} *(\frac{4.127x10^{3}*delta-T }{0.0128*2257x10^{3}*1.76 } )^{3} \\delta-T=20.4

The tube surface temperature immediately after installation is:

Tinst = 100 + 20.4 = 120.4°C

For rough surfaces, Cfg = 0.0068. Using the same equation:

ΔT = 10.8°C

The tube surface temperature after prolonged service is:

Tprolo = 100 + 10.8 = 110.8°C

8 0
3 years ago
A pin fin of uniform cross-sectional area is fabricated of an aluminum alloy (k = 160W m-1 K-1 ). The fin diameter is D = 4 mm,
disa [49]

Answer: (a) 36.18mm

(b) 23.52

Explanation: see attachment

4 0
3 years ago
Consider a multiprocessor system and a multithreaded program written using the many-to-many threading model. Let the number of u
Montano1993 [528]

Answer:

At the point when the quantity of bit strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just part strings to processors and not client level strings to processors. At the point when the quantity of part strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used all the while. Be that as it may, when a part string obstructs inside the portion (because of a page flaw or while summoning framework calls), the comparing processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, in this way expanding the use of the multiprocessor system.When the quantity of part strings is not exactly the quantity of processors, at that point a portion of the processors would stay inert since the scheduler maps just bit strings to processors and not client level strings to processors. At the point when the quantity of bit strings is actually equivalent to the quantity of processors, at that point it is conceivable that the entirety of the processors may be used at the same time. Be that as it may, when a part string hinders inside the piece (because of a page flaw or while summoning framework calls), the relating processor would stay inert. When there are more portion strings than processors, a blocked piece string could be swapped out for another bit string that is prepared to execute, along these lines expanding the usage of the multiprocessor framework.

4 0
2 years ago
Other questions:
  • Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?
    5·1 answer
  • How to build a laser pointer?
    12·1 answer
  • A parallel plate capacitor has a separation of 2x10 m and free space between the plates. A 10 V battery is connected across the
    9·1 answer
  • What are three automotive safety systems
    14·1 answer
  • A fluid at 300 K flows through a long, thin-walled pipe of 0.2-m diameter. The pipe is enclosed in a concrete casing that is of
    10·1 answer
  • (1) Estimate the specific volume in cm3 /g for carbon dioxide at 310 K and (a) 8 bar (b) 75 bar by the virial equation and compa
    10·1 answer
  • . Bơm kiểu piston tác dụng đơn có áp suất p=0,64 Mpa và lưu lượng Q=3,5 l/s. Xác định tốc độ quay của trục bơm và công suất của
    7·1 answer
  • La iluminación de la superficie de un patio amplio es 1600 lx cuando el ángulo de elevación del sol 53°. Calcular la iluminación
    15·1 answer
  • As a worker in this field you would:
    5·1 answer
  • What is the tolerance for number 4?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!