Answer:
BF3
Explanation:
For this question, you need to use the number of valence electrons present in each element. Boron is in group 3/13 on the periodic table so you know it has 3 valence electrons while Fluorine is in group 7/17 so it has 7 valence electrons. These elements are both covalent so they will share electrons. All elements in the first three rows want to reach either have 8 valence electrons or zero valence electrons depending on whichever is easier. When B and F interact each Fluorine will only want to take one electron, but Boron wants to get rid of all 3 electrons, so it will bond with 3 Fluorine to get rid of all its valence electrons.
I hope this helps.
As mentioned above, phosphoric acid has 3 pKa values, and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq)
+ H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
At the highest pKa value (12.4) of phosphoric acid, the last OH group will lose its hydrogen. On the picture I attached, it is shown required protonated form of phosphoric acid before reaction whose pKa value is 12.4.
Purebred<span> — Also called HOMOZYGOUS and consists of gene pairs with genes that are the SAME. Hybrid - Also called HETEROZYGOUS and consists of gene pairs that are D i'FFEREN'i". </span>Genotype<span> is the actual GENE makeup represented by LE'H'ERS.</span>
Answer:
Explanation:
A single replacement or single displacement reaction is a reaction in which one substance replaces another.
A + BC → AC + B
The replacement of an ion in solution by a metal higher in the activity series is a special example of this reaction type.
The relative positions of the elements in the activity series provides the driving force for single displacement reactions.
A double replacement reaction is one in which there is an actual exchange of partners between reacting species. This reaction is more common between ionic substances;
AB + CD → AC + BD
Such reactions are usually driven by;
- formation of precipitation
- formation of water and a gaseous product
Explanation:
Carbon-12 atoms have stable nuclei because of the 1:1 ratio of protons and neutrons.
Carbon-14 atoms have nuclei which are unstable. C-14 atoms will undergo alpha decay and produce atoms of N-14. Carbon-14 dating can be used to determine the age of artifacts which are not more than 50,000 years old.