Answer:
In a voltaic cell, current is produced by connecting an oxidation reaction half cell to a reduction reaction half cell in an electrolyte solution. Oxidation and reduction reactions (redox reactions) are chemical reactions involving a transfer of electrons from one atom in the reaction to another. When two different oxidation or reduction reactions are connected electrically by connecting the cathode to the anode, a current is formed. The direction depends on the type of reaction taking place at the terminal.
The first step would be to determine metals to be used as the cathode and the anode.
Answer:
The time rate of change of the electric field between the plates is
Explanation:
From the question we are told that
The radius is 
The distance of separation is 
The current is 
Generally the electric field generated is mathematically represented as

Where
is the permitivity of free space with a value

So the time rate of change of the electric field between the plates is mathematically represented as

But 
So

substituting values


Answer:
113.53 g
Explanation:
Please see attached photo for explanation.
In the attached photo, M is the mass of the meter stick.
The value of M can be obtained as shown below:
Clockwise moment = M × 10.5
Anticlockwise moment = 65.5 × 18.2
Anticlockwise moment = Clockwise moment
65.5 × 18.2 = M × 10.5
1192.1 = M × 10.5
Divide both side by 10.5
M = 1192.1 / 10.5
M = 113.53 g
Thus, the mass of the meter stick is 113.53 g
C, exothermic reaction. These types of reaction releases heat so that you can heat up your ready-to-eat meals.
Answer:
d= 1.56 m
Explanation:
In order to have a constructive interference, the path difference between the sources of the sound, must be equal to an even multiple of the semi-wavelength, as follows:
⇒ d = d₂ - d₁ = 2n*(λ/2)
The minimum possible value for this distance, is when n=1, as it can be seen here:
dmin = λ
In any wave, there exists a fixed relationship between the wave speed, the frequency and the wavelength:
v = λ*f
If v = vsound = 343 m/s, and f = 220 1/s, we can solve for λ:
λ =
⇒ dmin =λ = 1.56 m