H2-element
HCl-compound
Na-element
Al2O3-compound
H2O-compound
Dark is just absence of light like if the re container a and container b u nee to pour hcl from a to so a has hcl while b has absence of hcl
tell me if u need more examples.hope it helps
Answer:
number of moles = 6.393 moles
Explanation:
One mole of any substance contains Avogadro's number (6.022 * 10^23) of atoms.
Therefore, to know the number of moles that contain 3.85 * 10^24 atoms, all we have to do is cross multiplication as follows:
1 mole ......................> 6.022 * 10^23
?? moles ..................> 3.85 * 10^24
number of moles = (3.85 * 10^24 *1) / (6.022 * 10^23)
number of moles = 6.393 moles
Hope this helps :)
Answer:
The basic essential activities performed by an organism to withstand its life are called as life processes. These include nutrition, respiration, circulation, excretion and reproduction. Organisms obtain energy from food to perform these life processes which are essential for survival.
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>