26 m/s for fifteen seconds. distance = rate times time, so distance = 26 m/s * 15 seconds. this gives you distance = 390 meters.
They begin to adapt into their new location. They then end up having adaptations to help them survive.
Answers:(a) 
μT
(b) 
μm
(c) f =
Explanation:Given electric field(in y direction) equation:

(a) The amplitude of electric field is

. Hence
The amplitude of magnetic field oscillations is

Where c = speed of light
Therefore,

μT (Where T is in seconds--signifies the oscillations)
(b) To find the wavelength use:



μm
(c) Since c = fλ
=> f = c/λ
Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f =
I think analog but I could be wrong
The new speed of car is 10.9 m/s
<h3 />
According to the principle of momentum conservation, momentum is only modified by the action of forces as they are outlined by Newton's equations of motion; momentum is never created nor destroyed inside a problem domain.
Mass of the railroad car, m₁ = 7950 kg
Mass of the load, m₂ = 2950 kg
It can be assumed as the speed of the car, u₁ = 15 m/s
Initially, it is at rest, u₂ = 0
Let v is the speed of the car. It can be calculated using the conservation of momentum as :




Therefore, the new speed of care is 10.9 m/s
Learn more about momentum here:
brainly.com/question/22257327
#SPJ1