Criminal justice is the delivery of justice to those who have committed crimes. The criminal justice system is a series of government agencies and institutions whose goal is to identify and catch the law-breakers and to inflict a form of punishment on them.
-Hope this Helps
Observe that the given vector field is a gradient field:
Let
, so that
![\dfrac{\partial g}{\partial x} = x y^2 z^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20x%7D%20%3D%20x%20y%5E2%20z%5E2)
![\dfrac{\partial g}{\partial y} = x^2 y z^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%20%3D%20x%5E2%20y%20z%5E2)
![\dfrac{\partial g}{\partial z} = x^2 y^2 z](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20z%7D%20%3D%20x%5E2%20y%5E2%20z)
Integrating the first equation with respect to
, we get
![g(x,y,z) = \dfrac12 x^2 y^2 z^2 + h(y,z)](https://tex.z-dn.net/?f=g%28x%2Cy%2Cz%29%20%3D%20%5Cdfrac12%20x%5E2%20y%5E2%20z%5E2%20%2B%20h%28y%2Cz%29)
Differentiating this with respect to
gives
![\dfrac{\partial g}{\partial y} = x^2 y z^2 + \dfrac{\partial h}{\partial y} = x^2 y z^2 \\\\ \implies \dfrac{\partial h}{\partial y} = 0 \implies h(y,z) = i(z)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%20%3D%20x%5E2%20y%20z%5E2%20%2B%20%5Cdfrac%7B%5Cpartial%20h%7D%7B%5Cpartial%20y%7D%20%3D%20x%5E2%20y%20z%5E2%20%5C%5C%5C%5C%20%5Cimplies%20%5Cdfrac%7B%5Cpartial%20h%7D%7B%5Cpartial%20y%7D%20%3D%200%20%5Cimplies%20h%28y%2Cz%29%20%3D%20i%28z%29)
Now differentiating
with respect to
gives
![\dfrac{\partial g}{\partial z} = x^2 y^2 z + \dfrac{di}{dz} = x^2 y^2 z \\\\ \implies \dfrac{di}{dz} = 0 \implies i(z) = C](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20z%7D%20%3D%20x%5E2%20y%5E2%20z%20%2B%20%5Cdfrac%7Bdi%7D%7Bdz%7D%20%3D%20x%5E2%20y%5E2%20z%20%5C%5C%5C%5C%20%5Cimplies%20%5Cdfrac%7Bdi%7D%7Bdz%7D%20%3D%200%20%5Cimplies%20i%28z%29%20%3D%20C)
Putting everything together, we find a scalar potential function whose gradient is
,
![f(x,y,z) = \nabla \left(\dfrac12 x^2 y^2 z^2 + C\right)](https://tex.z-dn.net/?f=f%28x%2Cy%2Cz%29%20%3D%20%5Cnabla%20%5Cleft%28%5Cdfrac12%20x%5E2%20y%5E2%20z%5E2%20%2B%20C%5Cright%29)
It follows that the curl of
is 0 (i.e. the zero vector).