Answer: Option A : Technician A
Explanation:
The statement/observation, "that the starter motor used to crank diesel engines can draw up to 400 amps of current" made by Technician A is correct.
A diesel engine uses up to 400+ Amperes of electricity to start up a diesel engine in the ignition chamber of motor engine.
To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:

vector with direction equal to the axis X.
Explanation:
We use the Gauss Law and the superposition law in order to solve this problem.
<u>Superposition Law:</u> the Total Electric field is the sum of the electric field of the first infinite sheet and the Electric field of the second infinite sheet:

<u>Thanks Gauss Law</u> we know that the electric field of a infinite sheet with density of charge σ is:

Then:

This electric field has a direction in the axis perpendicular to the sheets, that means it has the same direction as the axis X.
Answer: The speed will be 30 m/s .
Explanation:
Given: Initial velocity of the car: u = 0 m/s
Constant Acceleration: a = 5 m/s²
Time: t= 6 seconds
To find: Final velocity(v)
Formula: v = u+at
Substitute values in the formula, we get
v= 0+(5)(6) m/s
⇒ v= 30 m/s
i.e. Final velocity = 30 m/s
Hence, the speed will be 30 m/s .