Answer:
For areas marked X, Y, Z, X is attractive only, Y has a very small range, and Z is attractive and repulsive
Explanation:
Solution
Given that:
From the question stated, Anna drew a diagram to compare forces that are strong and weak.
Now,
We are to find which labels are grouped in areas marked as X, Y, Z respectively.
Thus,
For X, Y, Z it is marked as:
X: Always attractive or attractive only
Y: Very small range
Z: Repulsive and attractive
A boy shooting a rubber band across the classroom -->
Elastic potential energy transformed into kinetic energy
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy
A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)
Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)
Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)
Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)
Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)
Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)
</span> <span>
</span>
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:
false is the answer because it was around in the 1880's
Explanation:
I hope this helped
Answer:
Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.
Explanation:
We have been given that the average distance of Enceladus from Saturn is 238,000 km; the average distance of Titan from Saturn is 1,222,000 km.
We will use Kepler's Law to solve our given problem.
Upon substituting our given values, we will get:
Taking square root of both sides, we will get:
This implies that time period of Titan about Sturn is 11.634 times more compared to time period of Enceladus about Saturn.
So, basically Titan takes 11.634 times longer to orbit Saturn as compared to Enceladus.