Answer:
It is due to the large impulse is imparted on the flour.
Explanation:
A ball is moving faster.
When a ball is moving faster strikes to the flour, the change in momentum is large and thus the impulse imparted on the flour is large.
Impulse = change in momentum
So, as the flour experiences large impulse and large momentum so that the flour spreads out.
If the change in momentum is large so the flour spreads out is more.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
The purpose of the brush is supposed to be to lessen the amount of damage or wear placed upon the motor. I hope this helps with your answer choices since you did not post any.
is the acceleration of the box.
<u>Explanation:</u>
Given data:
Mass of the box = 3.74 kg
Flat friction-less ground is pulled forward by a 4.20 N force at a 50.0 degree angle and pulled back by a 2.25 N force at a 122 degree angle.
First, we need to find the net horizontal force acting on the box. With the given data, the equation can be formed as below. Net horizontal force acting on the box (F) is given by


F = 2.699676 – 1.192275 = 1.507 N
Next, find acceleration of the box using Newton's second law of motion. This states that the link between mass (m) of an objects and the force (F) required to accelerate it. The equation can be given as

