We know that molarity = mol/L, so:
1.5 M = x mol/0.345 L
1.5 M * 0.345 L = x mol => 0.5175 mol
0.5175 mol/0.250 L = 2.07 M
Your new molarity of the solution will be 2.07 M.
Explanation:
Vapor pressure is defined as the pressure exerted by vapors or gas on the surface of a liquid.
It is known that at standard condition, vapor pressure is 760 mm Hg.
And, it is given that methanol vapor pressure in air is 88.5 mm Hg.
Hence, calculate the volume percentage as follows.
Volume percentage =
=
= 11.65%
Thus, we can conclude that the maximum volume percent of Methanol vapor that can exist at standard conditions is 11.65%.
Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
Most Favored Nation status is an economic position in which a country enjoys the best trade terms given by its trading partner. That means it receives the lowest tariffs, the fewest trade barriers, and the highest import quotas (or none at all).
I got this from google, hope it helps! :)
5 x 2 = 10
3 x 3 = 9
10/9, or 1 1/9 is your answer
hope this helps