Answer:
No, and yes. As there is a finite amount of matter in the
universe, only so much can be converted to make energy. There will
be a limit, though it is a long, long way from where we are
Explanation:
The nuclear equation :
₈₂²¹⁴Pb ⇒ ₈₃²¹⁴Bi + ₋₁⁰e
<h3>Further explanation
</h3>
Given
₈₂²¹⁴Pb
beta β ₋₁e⁰ particles
Required
Nuclear equation
Solution
Radioactivity is the process of unstable isotopes to stable isotopes by decay, by emitting certain particles,
-
alpha α particles ₂He⁴
- beta β ₋₁e⁰ particles
- gamma particles ₀γ⁰
- positron particles ₁e⁰
- neutron ₀n¹
The principle used is the sum of the atomic number and mass number before and after the decay reaction is the same
The reaction
₈₂²¹⁴Pb ⇒ X + ₋₁⁰e
The element X has
-the atomic number = 82 + 1 = 83
-the mass number = 214
In the periodic system, the element with atomic number 83=Bismuth
Number 1.c
number 2.a
number 3.b
number 4.d
Deltas are formed by deposits of sediments, soil, sand, and gravel.
Answer:
T₂ = 218.75 K
Explanation:
Given data:
Initial volume = 20 L
Initial pressure = 16 atm
Initial temperature = 500 K
Final temperature = ?
Final volume = 35 L
Final pressure = 4 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
by putting values,
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂ T₁/ P₁V₁
T₂ = 4 atm × 35 L × 500 K / 16 atm × 20 L
T₂ = 70000 atm .L. K / 320 atm.L
T₂ = 218.75 K