The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults
hope it helps ..............
Answer:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Explanation:
This question is asking to write and balance an equation between between aqueous sodium carbonate (Na2CO3) and aqueous nitric acid (HNO3). The equation is as follows:
HNO3 (aq) + Na2CO3 (aq) → NaNO3 (aq) + CO2 (g) + H2O (l)
However, this equation is not balanced as the number of atoms of each element must be the same on both sides of the equation. To balance the equation, one will make use of coefficients as follows:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Answer:
Which statements describe how chemical formulas, such as H2O, represent compounds? ... They show the elements that make up a compound. They show the types of atoms that make up a molecule. They show the number of each type of atom in a molecule.