<u>Answer:</u> The correct answer is Option E.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical equation for the reaction of aluminium and water follows:

The coefficient of Aluminium is 2.
Hence, the correct answer is Option E.
The rate constants, K, can be expressed in many different terms. In this case, Kp is the equilibrium constant expressed in terms of gas partial pressure. The formula for this is:
Kp = [P(product C) × P(product D)] / [P(reactant A) × P(reactant B)]
As there is only one product, we will use only its pressure in the numerator.
Kp = [P(COCl2)] / [P(CO) × P(Cl2)]
P(COCl2) = 1.49 × 10⁸ × 2.22 × 10⁻⁴ × 2.22 × 10⁻⁴
P(COCl2) = 7.34 atm
<h2>Answer : Law of conservation of mass</h2><h3>Explanation :</h3>
The law of conservation of mass states that in any reaction mass is neither created nor lost it has to remain constant in a system.
In this case, when the reaction setup was done in normal way the mass was lost in surrounding was not considered nor being calculated; whereas when the reaction was studied in a closed system where the gas was collected after the reaction the mass changes was noted down which helped to prove the point of law of conservation of mass and energy.
One can consider an example of soda can where the carbonated drink contains pressurized carbon dioxide gas. when opened the gas bubbles gets lost into the surroundings and we don't measure the mass changes. Instead if the soda can was opened in such a way where the gas evolved was measured then the mass changed would remain the same.
Answer:
It will lead to a decrease in the boiling points
Explanation:
Decreasing the pressure exerted on a compound reduces d boiling points because a high temperature is needed also to boil a compound
Answer:
1. Jupiter
2. Mercury
3. Venus
4. Venus
5. Jupiter
6. Neptune
7. Mercury
8. Saturn (used to be Jupiter)