Answer:
D
Step-by-step explanation:
my friend answer this same question the other day
Answer:1.69*10^12 J
Step-by-step explanation:
From figure above, using triangle ratio
485/755.5=y/l. Cross multiplying 485l=755.5y Divide via 485) hence l= 755.5y/485
Consider a slice volume Vslice= (755.5y/485)^2∆y; recall density =150lb/ft^3
Force slice = 150*755.5^2.y^2.∆y/485^2
From figure 2 in the attachment work done for elementary sclice
Wslice= 150.755.5^2.y^2.∆y.(485-y)/485^2
= (150*755.5^2*y^2)(485-y)∆y/485
To calculate the total work we integrate from y=0 to y= 485
Ie W=[ integral of 150*755.5^2 *y^2(485-y)dy/485] at y=0 and y= 485
Integrating the above
W= 150*755.5^2/485[485*y^3/3-y^4/4] at y= 0 and y=485
W= 150*755.5^2/485(485*485^3/3-484^4/4)-(485.0^3/3-0^4/4)
Work done 1.69*10^12joules
Answer:
0 +256i
Step-by-step explanation:
According to Euler's formula, ...
(4 cis π/8)^4 = (4^4) cis (4×π/8) = 256 cis π/2 = 0 +256i
_____
"cis" is an abbreviation sometimes used for "cosine + i×sine". It simplifies writing the expression. Engineers sometimes simplify it further, writing 4∠(π/8) for the expression in this problem statement.