Answer:
70.15 Joule
Explanation:
mass of man, m = 70 kg
intial length, l = 11 m
extension, Δl = 1.5 m
Let K is the spring constant.
In the equilibrium position
mg = K l
70 x 9.8 = K x 11
K = 62.36 N/m
Potential energy stored, U = 0.5 x K x Δl²
U = 0.5 x 62.36 x 1.5 x 1.5
U = 70.15 Joule
Answer:
t = 23.255 s, x = 2298.98 m, v_y = - 227.90 m / s
Explanation:
After reading your extensive writing, we are going to solve the approach.
The initial speed of the plane is 250 miles / h and it is at an altitude of 2650 m; In general, planes fly horizontally for launch, therefore this is the initial horizontal speed.
As there is a mixture of units in different systems we are going to reduce everything to the SI system.
v₀ₓ = 250 miles h (1609.34 m / 1 mile) (1 h / 3600 s) = 111.76 m / s
y₀ = 2650 m
Let's set a reference system with the x-axis parallel to the ground, the y-axis is vertical. As time is a scalar it is the same for vertical and horizontal movement
Y axis
y = y₀ + v₀ t - ½ g t²
the initial vertical velocity when the cargo is dropped is zero and when it reaches the floor the height is zero
0 = y₀ + 0 - ½ g t²
t =
t = √(2 2650/ 9.8)
t = 23.255 s
Therefore, for the cargo to reach the desired point, it must be launched from a distance of
x = v₀ₓ t
x = 111.76 23.255
x = 2298.98 m
at the point and arrival the speed is
vₓ = v₀ₓ = 111.76
vertical speed is
v_y = v_{oy} - gt
v_y = 0 - gt
v_y = - 9.8 23.25 555
v_y = - 227.90 m / s
the negative sign indicates that the speed is down
in the attachment we have a diagram of the movement
Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon ! If there were some miraculous substance
that could do that, we'd have it made.
All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.
Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove. It wouldn't take much to git 'er going.
The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels. Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up. We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.
The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).
Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.
You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."
Temperature is usually expressed in degrees Fahrenheit or Celsius. 0 degrees Celsius is equal to 32 degrees Fahrenheit. Room temperature is typically considered 25 degrees Celsius, which is equal to 77 degrees Fahrenheit.