P = m x v
P = 30 x 10
=300
Before you start working on any motion problem, YOU decide which direction you're going to call 'positive'. Everybody almost always calls UP positive, and the acceleration of gravity points down, so it winds up negative. But you could just as well call DOWN the positive direction. Then, the cannonball is fired with a negative vertical speed, and the acceleration of gravity eventually robs all of its negative speed, and makes it start falling in the positive direction. The whole thing is your choice.
In both magnitude and direction since acceleration is a vector quantity
maximum speed of cheetah is

speed of gazelle is given as

Now the relative speed of Cheetah with respect to Gazelle


now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as

so by rearranging the terms we can say


so above is the relation between all given variable
Answer:
2.45 J
Explanation:
The following data were obtained from the question:
Mass (m) = 0.5 kg
Height (h) = 1 m
Kinetic energy (KE) =?
Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 1/2 = 0.5 m
Final velocity (v) =?
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 0.5)
v² = 9.8
Take the square root of both side
v = √9.8
v = 3.13 m/s
Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:
Mass (m) = 0.5 kg
Velocity (v) = 3.13 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.5 × 3.13²
KE = 0.25 × 9.8
KE = 2.45 J
Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J