1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
3 years ago
13

How can we calculate the e.m.f of the battery?.

Physics
2 answers:
cluponka [151]3 years ago
7 0

Explanation:

The emf is equal to the work done on the charge per unit charge (ϵ=dWdq) when there is no current flowing. Since the unit for work is the joule and the unit for charge is the coulomb, the unit for emf is the volt (1V=1J/C).

Tems11 [23]3 years ago
6 0

Answer:

The EMF or electromotive force is the energy supplied by a battery or a cell per coulomb (Q) of charge passing through it. The magnitude of emf is equal to V (potential difference) across the cell terminals when there is no current flowing through the circuit. (byjus)

Explanation:

You might be interested in
Prove(show) ''T=2π√(l/g)''​
Nonamiya [84]

Answer:

Time period for Simple pendulum, T=2\pi\sqrt{\frac{l}{g}

Explanation:

The Simple Pendulum

Consider a small bob of mass m is tied to extensible string of length l that is fixed to rigid support. The bob is oscillating in the plane about verticle.

       Let \theta is the angle made by string with vertical  during oscillation.

Vertical component of the force on bob, F=-mg\sin\theta

Negative sign shows that its opposing the motion of bob.

Taking \theta as very small angle then, \sin\theta\sim\theta

F=-mg\theta    

Let x is the displacement made by bob from its mean position ,

then, \theta=\frac{x}{l}

so, F=-mg\frac{x}{l}                ........(1)

Since, pendulum is in hormonic motion,

as we know, F=-kx

where k is the constant and k=m\omega^{2}

F=-m\omega^2x                   .........(2)

From equation (1) and (2)

-m\omega^2x=-mg\frac{x}{l}

\omega=\sqrt{\frac{g}{l}}

Since, \omega=\frac{2\pi}{T}

\frac{2\pi}{T}=\sqrt{\frac{g}{l}

T=2\pi\sqrt{\frac{l}{g}}

6 0
3 years ago
a car traveling at a speed of 72km/h is uniformly returded and comes to rest after 8 seconds if the car with the occupants has a
cricket20 [7]

Answer:

the breaking force is 12

Explanation:

7 0
3 years ago
An airplane traveling at half the speed of sound emits a sound of frequency 4.68 kHz. (a) At what frequency does a stationary li
kkurt [141]

Answer:

(a) 9.36 kHz

(b) 3.12 kHz

Explanation:

(a)

V = speed of sound

v = speed of airplane = (0.5) V

f = actual frequency of sound emitted by airplane = 4.68 kHz = 4680 Hz

f' = Frequency heard by the stationary listener

Using Doppler's effect

f' = \frac{Vf}{V-v}

f' = \frac{V(4680)}{V-(0.5)V)}

f' = 9360 Hz

f' = 9.36 kHz

(b)

V = speed of sound

v = speed of airplane = (0.5) V

f = actual frequency of sound emitted by airplane = 4.68 kHz = 4680 Hz

f' = Frequency heard by the stationary listener

Using Doppler's effect

f' = \frac{Vf}{V+v}

f' = \frac{V(4680)}{V+(0.5)V)}

f' = 3120 Hz

f' = 3.12 kHz

6 0
3 years ago
Please help with Physics Circuits!
Zigmanuir [339]
1) Let's start by calculating the equivalent resistance of the three resistors in parallel, R_2, R_3, R_4:
\frac{1}{R_{234}}= \frac{1}{R_2}+ \frac{1}{R_3}+ \frac{1}{R_4}= \frac{1}{4.5 \Omega}+ \frac{1}{1.3 \Omega}+ \frac{1}{6.3 \Omega}=1.15 \Omega^{-1}
From which we find
R_{234}= \frac{1}{1.15 \Omega^{-1}}=0.9 \Omega

Now all the resistors are in series, so the equivalent resistance of the circuit is the sum of all the resistances:
R_{eq}=R_1 + R_{234} = 5 \Omega + 0.9 \Omega = 5.9 \Omega
So, the correct answer is D) 


2) Let's start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} =  \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{5 \Omega}+ \frac{1}{5 \Omega}= \frac{2}{5 \Omega}
From which we find
R_{23} = 2.5 \Omega

And these are connected in series with a resistor of 10 \Omega, so the equivalent resistance of the circuit is
R_{eq}=10 \Omega + 2.5 \Omega = 12.5 \Omega

And by using Ohm's law we find the current in the circuit:
I= \frac{V}{R_{eq}}= \frac{9 V}{12.5 \Omega}=0.72 A
So, the correct answer is C).


3) Let' start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} =  \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{5 \Omega}+ \frac{1}{5 \Omega}= \frac{2}{5 \Omega}
From which we find
R_{23} = 2.5 \Omega
Then these are in series with all the other resistors, so the equivalent resistance of the circuit is
R_{eq}=R_1 + R_{23}+R_4 = 5 \Omega + 2.5 \Omega + 5 \Omega =12.5 \Omega

And by using Ohm's law we find the current flowing in the circuit:
I= \frac{V}{R_{eq}}= \frac{12 V}{12.5 \Omega}=0.96 A

And so the voltage read by the voltmeter V1 is the voltage drop across the resistor 2-3:
V= I R_{23} = (0.96 A)(2.5 \Omega)=2.4 V
So, the correct answer is D).


4) Again, let's start by calculating the equivalent resistance of the two resistors in parallel:
\frac{1}{R_{23}} = \frac{1}{R_2}+ \frac{1}{R_3}= \frac{1}{13 \Omega}+ \frac{1}{18 \Omega}=0.13 \Omega^{-1}
From which we find
R_{23} = 7.55 \Omega

Now all the resistors are in series, so the equivalent resistance of the circuit is:
R_{eq}= R_1 + R_{23}+R_4=8.5 \Omega+7.55 \Omega + 3.2 \Omega = 19.25 \Omega

The current in the circuit is given by Ohm's law
I= \frac{V}{R_{Eq}}= \frac{15 V}{19.25 \Omega}=0.78 A

Now we can compare the voltage drops across the resistors. Resistor 1:
V_1 = I R_1 = (0.78 A)(8.5 \Omega)=6.63 V
Resistor 2 and resistor 3 are in parallel, so they have the same voltage drop:
V_2 = V_3 = V_{23} = I R_{23} = (0.78 A)(7.55 \Omega)=5.89 V
Resistor 4:
V_4 = I R_4 = (0.78 A)(3.2 \Omega)=2.50 V

So, the greatest voltage drop is on resistor 1, so the correct answer is D).


5) the figure shows a circuit with a resistor R and a capacitor C, so it is an example of RC circuit. Therefore, the correct answer is D).

6) The circuit is the same as part 4), so the calculations are exactly the same. Therefore, the power dissipated on resistor 3 is
P_3 = I_3^2 R_3 =  \frac{V_3^2}{R_3}= \frac{(5.89 V)^2}{18 \Omega}=2.0 W
So, correct answer is B).

7) The circuit is the same as part 4), so we can use exactly the same calculation, and we immediately see that the resistor with lowest voltage drop was R4 (2.50 V), so the correct answer is B) R4.
5 0
2 years ago
Read 2 more answers
Consider the reaction data. A ⟶ products T ( K ) k ( s − 1 ) 225 0.385 525 0.635 What two points should be plotted to graphicall
lutik1710 [3]

Answer:

Plot ln K vs 1/T

(a) -0.5004; (b) 0.002 539 K⁻¹; (c) -197.1 K⁻¹; (d) 1.64 kJ/mol

Explanation:

This is an example of the Arrhenius equation:

k = Ae^{-E_{a}/RT}\\\text{Take the ln of each side}\\\ln k = \ln A - \dfrac{E_{a}}{RT}\\\\\text{We can rearrange this to give}\\\ln k = - \dfrac{E_{a}}{R}\dfrac{1}{T} + \ln A\\\\y = mx + b

Thus, if we plot ln k vs 1/T, we should get a straight line with slope = -Eₐ/R and a y-intercept = lnA

Data:

\begin{array}{cccc}\textbf{k/s}\mathbf{^{-1}} &\mathbf{\ln k} & \textbf{T/K} & \mathbf{1/T(K^{-1})}\\0.285 & -0.9545 & 225 &0.004444\\0.635 & -0.4541 & 525 & 0.001905\\\end{array}

Calculations:

(a) Rise

Δy = y₂ - y₁ = -0.9545 - (-0.4541) = -0.9545 + 0.4541 = -0.5004

(b) Run

Δx = x₂ - x₁ = 0.004 444 - 0.001 905 = 0.002 539 K⁻¹

(c) Slope

Δy/Δx = -0.5004/0.002 539 K⁻¹ = -197.1 K⁻¹

(d) Activation energy

Slope = -Eₐ/R

Eₐ = -R × slope = -8.314 J·K⁻¹mol⁻¹ × (-197.1 K⁻¹) = 1638 J/mol = 1.64 kJ/mol

4 0
3 years ago
Other questions:
  • Psychological profiling is also known as criminal profiling. True or False?
    7·2 answers
  • Which is not a reason why the mass of an atom is expressed in atomic mass units rather than in grams?
    7·2 answers
  • 5. On the periodic table, which families are in the first period?<br> a
    6·2 answers
  • A 7.94-nC charge is located 1.77 m from a 4.14-nC point charge. (a) Find the magnitude of the electrostatic force that one charg
    11·1 answer
  • If you were to take the universe's temperature, what would the reading be?
    10·1 answer
  • a man crossed a road 8.25m wide at a speed of 2.01m/s,how long does it take to get man to cross the road​
    8·1 answer
  • Need help ASAP please and thank you
    9·2 answers
  • How much work is done by 0.070 m3 of gas, when the volume remains constant with pressure of 63 x 105 Pa?
    7·1 answer
  • A bullet of mass 0.010 kg and speed of 200 m/s is brought to rest in a wooden block after penetrating a distance of 0.10 m. The
    8·1 answer
  • Durning which type of process does pressure remain consistent
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!