I believe the correct answer is D. Because object A on the pH scale reads pH=3. Which means it is more acidic in nature and thus possess a greater hydrogen or hydronium ion concentration than object B, which has a higher value on the pH scale. Object B would thus have a lower hydronium ion concentration than Object A.
The empirical formula, <span>C<span>H2</span></span>, has a relative molecular mass of
<span>1×<span>(12.01)</span>+2×<span>(1.01)</span>=14.04</span>
This means that the empirical formula must be multiplied by a factor to bring up its molecular weight to 70. This factor can be calculated as the ratio of the relative masses of the molecular and empirical formulas
<span><span>7014.04</span>=4.98≈5</span>
Remember that subscripts in molecular formulas must be in whole numbers, hence the rounding-off. Finally, the molecular formula is
<span><span>C<span>1×5</span></span><span>H<span>2×5</span></span>=<span>C5</span><span>H<span>10</span></span></span>
Answer:
1 Joule=0.2390057361 Calorie
789kj=789×0.2390057361×1000
=188575.5257829calorie
Explanation:
Hope u have understand
Answer:

Explanation:
Hello,
In this case, given the 0.0990 moles of the salt are soluble in 1.00 L of water only, we can infer that the molar solubility is 0.099 M. Next, since the dissociation of the salt is:

The concentrations of the A and B ions in the solution are:
![[A]=0.099 \frac{molAB_3}{L}*\frac{1molA}{1molAB_3} =0.0099M](https://tex.z-dn.net/?f=%5BA%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B1molA%7D%7B1molAB_3%7D%20%20%3D0.0099M)
![[B]=0.099 \frac{molAB_3}{L}*\frac{3molB}{1molAB_3} =0.000.297M](https://tex.z-dn.net/?f=%5BB%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B3molB%7D%7B1molAB_3%7D%20%20%3D0.000.297M)
Then, as the solubility product is defined as:
![Ksp=[A][B]^3](https://tex.z-dn.net/?f=Ksp%3D%5BA%5D%5BB%5D%5E3)
Due to the given dissociation, it turns out:
![Ksp=[0.099M][0.297M]^3\\\\Ksp=2.59x10^{-3}](https://tex.z-dn.net/?f=Ksp%3D%5B0.099M%5D%5B0.297M%5D%5E3%5C%5C%5C%5CKsp%3D2.59x10%5E%7B-3%7D)
Regards.
I’ll give you NaCl but not all of them