Use Ideal gas law to solve. PV=mRT you have pressure (1.02atm), temperature (295K or 22°C), mass of KClO3(11.83g) , and universal gas constant on a molar mass basis (R=R_bar/M). Just make sure you units are consistent and use the ideal gas equation to solve for Volume. M, should be the total Molar mass for KClO3.
Answer:
30.06904
Explanation:
C3H4: Mass % C = 36.033 x 100 / 40.0641 = 89
Answer:
(1) 0.0016 mol/L
Explanation:
Let the concentration of alcohol after 3.5 hours be y M
The reaction follows a first-order
Rate = ky^0 = change in concentration/time
k = 6.4×10^-5 mol/L.min
Initial concentration = 0.015 M
Concentration after 3.5 hours = y M
Time = 3.5 hours = 3.5×60 = 210 min
6.4×10^-5y^0 = 0.015-y/210
y^0 = 1
0.015-y = 6.4×10^-5 × 210
0.015-y = 0.01344
y = 0.015 - 0.01344 = 0.00156 = 0.0016 mol/L (to 4 decimal places)
The new volume of the dilute solution is 0.33 L.
<u>Explanation:</u>
Using the law of Volumetric analysis, we can find the volume of the dilute solution from the stock solution or the concentrated solution of Calcium Chloride.
V1M1 = V2M2
V1 be the volume of the stock solution = 0.25 L
M1 being the molarity of the stock solution = 0.98 M
V2 be the volume of the dilute solution = ?
M2 being the molarity of the dilute solution = 0.74 M
We have to rearrange the above equation to find V2 as,
V2 = 
Now plugin the values as,
V2 = 
= 0.33 L
So the new volume of the dilute solution is 0.33 L.
Erosion etc. if it's specific then rain and weathering maybe